From cmc surfaces to Hamiltonian Stationary Lagrangian Surfaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

From cmc surfaces to Hamiltonian Stationary Lagrangian Surfaces

Résumé

This is a survey article which explains how the theory of integrable systems, in particular constructions related to harmonic maps into symmetric spaces, can be used to study many problems in geometry. It begins with the classical Enneper-Weierstrass representation of minimal surfaces, then generalizes, using loop groups, to the infinite-dimensional analogue for the non-minimal constant mean curvature surfaces of J. F. Dorfmeister, F. J. Pedit and H. Wu, and ends with work of the authors on Hamiltonian stationary Lagrangian surfaces in 2-dimensional complex symmetric spaces.
Fichier principal
Vignette du fichier
Tokyo_survey.pdf (253.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00733014 , version 1 (17-09-2012)

Identifiants

  • HAL Id : hal-00733014 , version 1

Citer

Frédéric Hélein, Pascal Romon. From cmc surfaces to Hamiltonian Stationary Lagrangian Surfaces. Mathematical Society of Japan 9th International Research Institute on Integrable Systems in Differential Geometry, 2002, Tokyo, Japan. pp.163-187. ⟨hal-00733014⟩
125 Consultations
249 Téléchargements

Partager

More