Smoothness of the density for solutions to Gaussian rough differential equations - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2015

Smoothness of the density for solutions to Gaussian rough differential equations

Résumé

We consider stochastic differential equations driven by a multi-dimensional Gaussian process. Under the assumption that the vector fields satisfy Hörmander's bracket condition, we demonstrate that the solution admits a smooth density for any strictly positive time t, provided the driving noise satisfies certain non-degeneracy assumptions. Our analysis relies on an interplay of rough path theory, Malliavin calculus, and the theory of Gaussian processes. Our result applies to a broad range of examples including fractional Brownian motion with Hurst parameter greater than 1/4, the Ornstein-Uhlenbeck process and the Brownian bridge returning after time T.
Fichier principal
Vignette du fichier
Hoermander13.pdf (466.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00732063 , version 1 (13-09-2012)

Identifiants

Citer

Thomas Cass, Martin Hairer, Christian Litterer, Samy Tindel. Smoothness of the density for solutions to Gaussian rough differential equations. Annals of Probability, 2015, 43 (1), pp.188-239. ⟨10.1214/13-AOP896⟩. ⟨hal-00732063⟩
254 Consultations
193 Téléchargements

Altmetric

Partager

More