Estimating and quantifying uncertainties on level sets using the Vorob'ev expectation and deviation with Gaussian process models - Archive ouverte HAL
Chapitre D'ouvrage Année : 2013

Estimating and quantifying uncertainties on level sets using the Vorob'ev expectation and deviation with Gaussian process models

Résumé

Several methods based on Kriging have been recently proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such level set - and not solely its volume - and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up, and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Fichier principal
Vignette du fichier
MODA10_Chevalier.pdf (218.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00731783 , version 1 (13-09-2012)
hal-00731783 , version 2 (22-07-2013)

Identifiants

Citer

Clément Chevalier, David Ginsbourger, Julien Bect, Ilya Molchanov. Estimating and quantifying uncertainties on level sets using the Vorob'ev expectation and deviation with Gaussian process models. Dariusz Ucinski, Anthony C. Atkinson, Maciej Patan. mODa 10 - Advances in Model-Oriented Design and Analysis Proceedings of the 10th International Workshop in Model-Oriented Design and Analysis Held in Łagów Lubuski, Poland, June 10-14, 2013, Springer International Publishing, pp.35-43, 2013, Contributions to Statistics, 978-3-319-00217-0. ⟨10.1007/978-3-319-00218-7⟩. ⟨hal-00731783v2⟩
405 Consultations
938 Téléchargements

Altmetric

Partager

More