Spin structure of electron subbands in (110)-grown quantum wells
Résumé
We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp 3 d 5 s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.