A clustering approach using weighted similarity majority margins
Résumé
We propose a meta-heuristic algorithm for clustering objects that are described on multiple incommensurable attributes defined on different scale types. We make use of a bipolar-valued dual similarity-dissimilarity relation and perform the clustering process by first finding a set of cluster cores and then building a final partition by adding the objects left out to a core in a way which best fits the initial bipolar-valued similarity relation.