Lagrangian flows for vector fields with gradient given by a singular integral - Archive ouverte HAL Access content directly
Journal Articles Journal of Hyperbolic Differential Equations Year : 2013

Lagrangian flows for vector fields with gradient given by a singular integral

Abstract

We prove quantitative estimates on flows of ordinary differential equations with vector field with gradient given by a singular integral of an $L^1$ function. Such estimates allow to prove existence, uniqueness, quantitative stability and compactness for the flow, going beyond the $BV$ theory. We illustrate the related well-posedness theory of Lagrangian solutions to the continuity and transport equations.
Fichier principal
Vignette du fichier
singular.pdf (327.93 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00724586 , version 1 (21-08-2012)

Identifiers

Cite

François Bouchut, Gianluca Crippa. Lagrangian flows for vector fields with gradient given by a singular integral. Journal of Hyperbolic Differential Equations, 2013, 10 (2), pp.235-282. ⟨10.1142/S0219891613500100⟩. ⟨hal-00724586⟩
86 View
417 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More