Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra - Archive ouverte HAL
Article Dans Une Revue Communications in Computational Physics Année : 2013

Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra

Résumé

Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms. We propose two new families of high-order elements for hexahedra, triangular prisms and pyramids that recover the optimal convergence. These elements have compatible restrictions with each other, such that they can be used directly on general hybrid meshes. Moreover the H(div) proposed spaces are completing the De Rham diagram with optimal elements previously constructed for H1 and H(curl) approximation. The obtained pyramidal elements are compared theoretically and numerically with other elements of the literature. Eventually, numerical results demonstrate the efficiency of the finite elements constructed.
Fichier principal
Vignette du fichier
PyramidsHdivCicpFinal.pdf (623.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00723472 , version 1 (10-08-2012)
hal-00723472 , version 2 (09-03-2013)

Identifiants

Citer

Morgane Bergot, Marc Duruflé. Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra. Communications in Computational Physics, 2013, 14 (5), pp.1372-1414. ⟨10.4208/cicp.120712.080313a⟩. ⟨hal-00723472v2⟩
320 Consultations
651 Téléchargements

Altmetric

Partager

More