IL-12Rβ2 is essential for the development of experimental cerebral malaria.
Résumé
A Th1 response is required for the development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). The role of pro-Th1 IL-12 in malaria is complex and controversial. In this study, we addressed the role of IL-12Rβ2 in ECM development. C57BL/6 mice deficient for IL-12Rβ2, IL-12p40, or IL-12p35 were analyzed for ECM development after blood-stage PbA infection in terms of ischemia and blood flow by noninvasive magnetic resonance imaging and angiography, T cell recruitment, and gene expression. Without IL-12Rβ2, no neurologic sign of ECM developed upon PbA infection. Although wild-type mice developed distinct brain microvascular pathology, ECM-resistant, IL-12Rβ2-deficient mice showed unaltered cerebral microcirculation and the absence of ischemia after PbA infection. In contrast, mice deficient for IL-12p40 or IL-12p35 were sensitive to ECM development. The resistance of IL-12Rβ2-deficient mice to ECM correlated with reduced recruitment of activated T cells and impaired overexpression of lymphotoxin-α, TNF-α, and IFN-γ in the brain after PbA infection. Therefore, IL-12Rβ2 signaling is essential for ECM development but independent from IL-12p40 and IL-12p35. We document a novel link between IL-12Rβ2 and lymphotoxin-α, TNF-α, and IFN-γ expression, key cytokines for ECM pathogenesis.