Model selection for hazard rate estimation in presence of censoring
Résumé
This note presents an estimator of the hazard rate function based on right censored data. A collection of estimators is built from a regression-type contrast, in a general collection of linear models. Then, a penalised model selection procedure provides an estimator which satisfies an oracle inequality. In particular, we can prove that it is adaptive in the minimax sense on Hölder spaces.