Invariance principles for self-similar set-indexed random fields - Archive ouverte HAL Access content directly
Journal Articles Transactions of the American Mathematical Society Year : 2014

Invariance principles for self-similar set-indexed random fields

Abstract

For a stationary random field $(X_j)_{j\in\Z^d}$ and some measure m on $\R^d$, we consider the set-indexed weighted sum process $S_n(A)=\sum_{j\in\Z^d}m(nA\cap R_j)^\frac12 X_j$, where R_j is the unit cube with lower corner j. We establish a general invariance principle under a p-stability assumption on the X_j's and an entropy condition on the class of sets A. The limit processes are self-similar set-indexed Gaussian processes with continuous sample paths. Using Chentsov's type representations to choose appropriate measures m and particular sets A, we show that these limits can be Lévy (fractional) Brownian fields or (fractional) Brownian sheets.
Fichier principal
Vignette du fichier
BiDu13.pdf (442.15 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00716437 , version 1 (10-07-2012)
hal-00716437 , version 2 (22-03-2013)

Identifiers

  • HAL Id : hal-00716437 , version 2

Cite

Hermine Biermé, Olivier Durieu. Invariance principles for self-similar set-indexed random fields. Transactions of the American Mathematical Society, 2014, 366 (11), http://www.ams.org/journals/tran/2014-366-11/S0002-9947-2014-06135-7/. ⟨hal-00716437v2⟩
213 View
178 Download

Share

Gmail Facebook X LinkedIn More