A construction of a $\beta$-coalescent via the pruning of Binary Trees - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Probability Année : 2013

A construction of a $\beta$-coalescent via the pruning of Binary Trees

Résumé

Considering a random binary tree with $n$ labelled leaves, we use a pruning procedure on this tree in order to construct a $\beta(\frac{3}{2},\frac{1}{2})$-coalescent process. We also use the continuous analogue of this construction, i.e. a pruning procedure on Aldous's continuum random tree, to construct a continuous state space process that has the same structure as the $\beta$-coalescent process up to some time change. These two constructions unable us to obtain results on the coalescent process such as the asymptotics on the number of coalescent events or the law of the blocks involved in the last coalescent event.
Fichier principal
Vignette du fichier
coalescent_11_12.pdf (209.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00711518 , version 1 (25-06-2012)
hal-00711518 , version 2 (09-11-2012)

Identifiants

Citer

Romain Abraham, Jean-François Delmas. A construction of a $\beta$-coalescent via the pruning of Binary Trees. Journal of Applied Probability, 2013, 50 (3), pp.772-790. ⟨hal-00711518v2⟩
225 Consultations
199 Téléchargements

Altmetric

Partager

More