Absence of sufficiently localized traveling wave solutions for the Novikov-Veselov equation at zero energy
Résumé
We demonstrate that the Novikov.Veselov equation (a (2+1)-dimensional analog of KdV) at zero energy does not possess solitons with the space localization stronger than O(|x|^{-4}).
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...