From non-Kählerian surfaces to Cremona group of P^2(C)
Résumé
For any minimal compact complex surface $S$ with $b_2(S)>0$ containing global spherical shells (GSS) there exists a family of surfaces $\cal S\to B$ with GSS which contains as fibers $S$, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface $T\subset B$. In case of surfaces with a cycle and one tree of rational curves we give new normal forms of contracting germs in Cremona group $Bir(\bb P^2(\bb C))$ and show that they admit a birational structure. These families contain all possible surfaces, in particular all surfaces $S$ with GSS and $0
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Georges Dloussky : Connectez-vous pour contacter le contributeur
https://hal.science/hal-00707355
Soumis le : mardi 12 juin 2012-15:11:21
Dernière modification le : vendredi 26 avril 2024-13:55:08
Archivage à long terme le : jeudi 15 décembre 2016-13:34:44
Citer
Georges Dloussky. From non-Kählerian surfaces to Cremona group of P^2(C). Complex Manifolds, 2014, 1, pp.1-33. ⟨hal-00707355⟩
125
Consultations
125
Téléchargements