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Abstract

For any minimal compact complex surface S with b2(S) > 0 containing global spherical
shells (GSS) there exists a family of surfaces S — B with GSS which contains as fibers .S, some
Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically
effective parameters. These families are versal outside a non empty hypersurface T' C B. In case
of surfaces with a cycle and one tree of rational curves we give new normal forms of contracting
germs in Cremona group Bir(P?(C)) and show that they admit a birational structure. These
families contain all possible surfaces, in particular all surfaces S with GSS and 0 < b(S) < 3
admit a birational structure.
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1 Introduction

Hopf surfaces are defined by contracting invertible germs F : (C2,0) — (C2,0). There are
well-known normal forms

F(z1,22) = (az1 +t25",bz2), 0<la| <|bl <1, (a—0")t =0, m e N*,

which give effective parameters of the versal deformation and give charts with transition map-
pings in the group Aut(C?) of polynomial automorphisms of C?, in particular in the Cremona
group Bir(P?(C)) of birational mappings of P?(C). Hopf surfaces are particular cases of a
larger family of compact complex surfaces in the VII class of Kodaira, namely surfaces S
containing global spherical shells (GSS). When b2(S) > 1, these surfaces admit neither affine
nor projective stuctures [17, 21, 18]. Their explicit construction consists in the composition
IT of n = by(S) blowing-ups (depending on 2n parameters) followed by a special glueing by a
germ of isomorphism ¢ (depending on an infinite number of parameters). These surfaces are
not almost homogeneous [26] hence 0 < dim H°(S,©) < 1 and Chern classes of surfaces in class
VI, satisfy the conditions by(S) = c2(S) = —c#(S). By Riemann-Roch formula, we obtain the
dimension of the base of the versal deformation of S,

2n < dim H'(S,0) = 2by(S) + dim H°(S, ©) < 2n + 1,
where O is the sheaf of holomorphic vector fields.
Some questions are raised

(1) Are the 2n parameters of the blown up points effective parameters ?

(2) If there are non trivial global vector fields, there is at least one missing parameter. How
to choose it 7

(3) Do compact surfaces with GSS admit a birational structure, i.e. is there an atlas with
transition mappings in Cremona group Bir(IP?(C)). More precisely is there in each con-
jugation class of contracting germs of the form Ilo (or of strict germs, following Favre
terminology [13]) a birational representative ?

Known results:

e If S is a Enoki surface (see [8]) or a Inoue-Hirzebruch surface (see [6]) known normal
forms, namely

n—1
F(z1,22) = (t"2125 + Zaiti+lz§+17t22), 0<tl <1,
=0

and

N(z1,22) = (223, 2123),

respectively, are birational. Here ( ]; Z ) € GI(2,2) is the composition of matrices

(1) = (V1)

with at least one of the second type.



o If S is of intermediate type (see definition in section 2), there are normal forms due to
C.Favre [13]

F(z1,22) = (A\2125 + P(22), 25), AeCr, seN* k>2

where P is a special polynomial. These normal forms are adapted to logarithmic deforma-
tions and show the existence of a foliation, however are not birational. In [25] K.Oeljeklaus
and M.Toma explain how to recover second Betti number which is now hidden and give
coarse moduli spaces of surfaces with fixed intersection matrix,

e Some special cases of intermediate surfaces are obtained from Hénon mappings H or
composition of Hénon mappings. More precisely, the germ of H at the fixed point at
infinity is strict, hence yields a surface with a GSS [16, 10]. These germs are birational.

Motivation:
Let S be a minimal compact complex surface with Betti numbers b1(S) = 1, n = b2(S) > 0,
the class of such surfaces will be denoted VII§. We consider the following conditions:

(A) S contains a global spherical shell (GSS),

(B) S contains by(S) rational curves,

(C) S contains a cycle of rational curves,

(D) S admits a deformation into by(.S) times blown up Hopf surfaces.

Conjecture: All these properties are equivalent, and any class VHSr surface possesses a global
spherical shell (GSS) i.e. an open submanifold biholomorphic to a standard neighborhood of S®
in C? which does not disconnect the surface.

We have
(4) <= (B) = (€)= (D

)
In fact (A) = (B) by the construction of GSS surfaces and (
(A) = (C) also by construction (see [5]) The implication (C
I. Nakamura [23, 24].

The strategy developped in [27, 28] is aimed to show that any surface in VIIg satisfies condition
(C), therefore the solution to the following problem would be a step toward the conjecture:
Problem: Let S — A be a family of compact surfaces over the disc such that for every u € A*,
S, contains a GSS. Does Sy contain a GSS 7 In other words, are the surface with GSS closed
in families 7

To solve this problem we have to study families of surfaces in which curves do not fit into flat
families, the volume of some curves in these families may be not uniformly bounded (see [12])
and configurations of curves change. Favre normal forms of polynomial germs associated to
surfaces with GSS, cannot be used because the discriminant of the intersection form is fixed.
Moreover, if using the algorithm of [25] we put F' under the form Ilo, o is not fixed in the
logarithmic family, depends on the blown up points and degenerates when a generic blown up
point approaches the intersection of two curves.

Therefore this article focuses on the problem of finding new normal forms of contracting germs
in intermediate cases of surfaces with fixed o, such that surfaces are minimal or not and
intersection matrices are not fixed. Since usual holomorphic objects, curves or foliations, do
not fit in global family, it turns out that birational structures could be the adapted notion.
Clearly the problem of their unicity raises.

B) = (4) by [11],
) = (D) has been obtained by

Main results: In section 2, we define large families ® ;. : Sj, — By of marked surfaces with
GSS with fixed second Betti number n = b2(S) which use the same n charts of blowing-ups
identified by a subset J C {0,...,n—1}. The base admits a stratification by strata over which



the intersection matrix of the n rational curves is fixed. With these fixed charts, we construct
explicit global sections of the direct image sheaf of the vertical vector fields R'®;, O over
By, which express the dependence on the parameters of the blown up points: [0;] are the
infinitesimal deformations along the rational curves and [;], i = 0,...,n — 1 the infinitesimal
deformations transversaly to the rational curves. Surfaces with non trivial global vector fields
exist over an analytic set of codimension at least 2 by [9]. In the following theorem we call a
“marked surface” a surface with the choice of a rational curve. It fixes the conjugacy class of
a contracting germ. Using a result of A.Teleman (see Appendix) we obtain in section 3,

Theorem 1. 1 Let (S,Cy) be a minimal marked surface containing a GSS of intermediate
type, with n = by(S). Let J = Io(Cy) and let ;. : Sy o — By be the family of surfaces with
GSS associated to J and o. Then, there exists a non empty hypersurface Ty, C B containing
Z ={u € B| h°(Sy,0,) > 0} such that foru € B;\ Ts,,

o) {16, 4] 10 < i < n— 1} is a base of H'(S.,04),
b) {[6i] | O; is generic} is a base of the space of infinitesimal logarithmic deformations
HY(Sy,0.(—Log D,)), where D, is the mazimal divisor in S,.
Moreover
i) If Tj , intersects a stratum By then Ty, N By is a hypersurface in By,

it) Ty, intersect each stratum B such that the corresponding surfaces admit twisted vector
fields and ZN By CTyo,

Corollary 1. 2 Any marked surface (S, Cy) belongs to a large family @5, : S;o — By and
there is a non empty hypersurface T, such that over By \ Ty, this family is versal.

This answers to the first question and the result is the best possible because T, is never
empty. What happens on the hypersurface T;, 7 Is it possible that there is a curve of
isomorphic surfaces 7 Is the canonical image of a stratum B 5s in the Oeljeklaus-Toma coarse
moduli space open ? Do we obtain all possible surfaces 7

In order to be self-contained, we explain in section 4 some results in [25], because Favre normal
forms are more convenient for computations. When the dual graph of the curves is a cycle with
only one tree, we show that the new normal forms

r
s

-1 -1
. p .
G(z1,22) = <(lel2 + Zaizéﬂ + al+KZ§l+K) 23, (leé + Zaizéﬂ + al+KZ§l+K) Zz)
i=0 i=0
which are composed of [ generic blowing-ups, n — [ non generic blowing-ups determined by the
matrix
( P4 ) € Gl(2,7),
r s

and if necessary an invertible polynomial mapping tangent to the identity, give all the possible
surfaces. In this situation we give explicitly the missing parameter and show that the hyper-
surface T, is a ramification hypersurface, in particular the canonical mapping from a stratum
to the Oeljeklaus-Toma coarse moduli space is a ramified covering. More precisely (see section
5) we have

Theorem 1. 3 Denote s :=p+q+1—1andd:= (r+s)— (p+q). We choose ag € C* and €
such that €=t = 1. Then

A) If r + s — 1 does not divide | —d or A # 1 there is a bijective polynomial mapping

fao,e . (Cl—l (Cl—l

a=(ar,arn) — (bprgra(@) - byrgrii(@))



such that
" S

-1 -1
AN )
l 1 l 1
G(z1,22) = ((2122—|— g aizé+ ) 23 <2122 + E a¢z§+ ) 22>
i=0 i=0

s conjugated to the polynomial germ

5
F(Zl, 2’2) = )\2’12’5 + E bizé, Z;Jrs ,
i=p+q

where X depends only on ag by 5.51.
B)Ifl—d=K(r+s—1) and A = 1, there is a bijective polynomial mapping

faoe: Cl-'xC — C-1xcC
a=(arsaaik) > (byrgri(@), - bpagiioi(a),c(a))
such that
-1 , -1 .
G(z1,22) = (Z1Zé + ZCMZQH + az+KZ§l+K) 23, (leé + Z aizy™ + al+KZ§l+K) z
i=0 i=0

18 conjugated to the polynomial germ

s sk(S)
k k(S)—1
F(z21,22) = | Az125 + E bz +cag @ 0TS
k=p+q

Corollary 1. 4 Let S in class VII] containing a GSS. Suppose that the dual graph of the
rational curves contains a cycle with only one tree, then S admits a birational structure. In
particular if ba(S) < 3 all surfaces admit birational structures.

On the traces Ty, N B s of the hypersurface T'; , on each stratum B s the canonical mapping
to the Oeljeklaus-Toma coarse moduli space is ramification locus. There is only one missing
parameter denoted a;y . This answers to the questions (2) and (3) in the case of cycles with
one tree. The simplest situation for by(S) = 2 is treated in details at the end of section 4.

It is conjectured that the composition of p germs of the type of G give all surfaces with p trees
of rational curves.

This article stems from discussions with Karl Oeljeklaus and Matei Toma at the university of
Osnabriich about the case by(S) = 2, I thank them for their relevant remarks. I thank Andrei
Teleman for fruitful discussions in particular to have explained me that thanks to his results
(see Corollary 6.72 in Appendix) the cocycles 8; and p; cannot be everywhere independent.

2 Surfaces with Global Spherical Shells

2.1 Basic constructions

Definition 2. 5 Let S be a compact complex surface. We say that S contains a global spherical
shell, if there is a biholomorphic map ¢ : U — S from a neighbourhood U C C? \ {0} of the
sphere S3 into S such that S\ ¢(S3) is connected.

Hopf surfaces are the simplest examples of surfaces with GSS.

Let S be a surface containing a GSS with n = by(S). It is known that S contains n
rational curves and to each curve it is possible to associate a contracting germ of mapping



F=1To=1p---1I, 10 : (C%0) — (C2,0) where Il = IIy---II,,_; : B! — B is a sequence of
n blowing-ups and o is a germ of isomorphism (see [5]). The surface is obtained by gluing two
open shells as explained by the following picture

Both open spherical shells

are identified by o o IT

Definition 2. 6 Let S be a surface containing a GSS, with n = by(S). A Enoki covering of
S is an open covering U = (U;)o<i<n—1 obtained in the following way:

o Wy is the ball of radius 1+ ¢ blown up at the origin, Co = II;*(0), By, CC By are small
balls centered at Oy = (ag,0) € Wy, Uy = Wy \ By,

e Forl1<i<n-—1, W; is the ball B;_1 blown up at O;_1, C; = Hi_l(Oi_l), B! cC B; are
small balls centered at O; € W;, U; = W, \ B..

The pseudoconcave boundary of U; is patched with the pseudoconvex boundary of U;y1 by I1;,
fori=0,...,n—2 and the pseudoconcave boundary of U,—_1 is patched with the pseudoconvex
boundary of Uy by olly, where

c: B(l+e¢) — W,
z=(z1,22) — o(2)

is biholomorphic on its image, satisfying o(0) = Op—1.

If we want to obtain a minimal surface, the sequence of blowing-ups has to be made in the
following way:

e Il blows up the origin of the two dimensional unit ball B,
e IT; blows up a point Oy € Cy = Hgl(O),. ..
e II;; ;1 blows up a point O; € C; = 1’[;1(01-,1)7 fori=0,...,n—2, and

e 0 : B — B sends isomorphically a neighbourhood of B onto a small ball in B in such
a way that ¢(0) € Cy,_1.

Each W; is covered by two charts with coordinates (u;,v;) and (u},v}) in which II; writes

L (wiy v;) = (wv; + ai—1,v;) and II;(uf, v)) = (v) 4+ a;—1, u;v}). In these charts the exceptional

curves has always the equations v; = 0 and v = 0.

A blown up point O; € C; will be called generic if it is not at the intersection of two curves.

The data (5, C) of a surface S and of a rational curve in S will be called a marked surface.
We assume that S is minimal and that we are in the intermediate case, therefore there is

at least one blowing-up at a generic point, and one at the intersection of two curves (hence



n > 2). If there is only one tree i.e. one regular sequence and if we choose Cy as being the
curve which induces the root of the tree, we suppose that

e II; is a generic blowing-up,
e II,,_1 blows-up the intersection of C,,_o with another rational curve and
e ¢(0) is one of the two intersection points of C,,_; with the previous curves.

The Enoki covering is obtained as in the following picture:

W/ /A

n

Enoki covering Va

ﬁ of asurface with one tree @
Ul
W/
V (u,v) 4\ R
Hl

where
e 1 <[ <n-—1andn>2 Ifall, but one, blowing-ups are generic, then [ =n — 1

Fori=1,...,01—1, IT;(u;,v;) = (u;v; + a;—1,v;) are generic blowing-ups,

II; (up, v)) = (v + ai—1,ujv;) is also generic, but Oy is the origin of the chart (u;,v}),

Fori=1+1,...,n—1, I;(u;,v;) = (u;v;,v;) or ;(ul,v)) = (v}, u;v}) are blowing-ups at

the intersection of two curves.



The general case of p > 1 trees is obtained by joining p sequences similar to the previous
one, i.e.,

F = llo
= (oI I, Iy _y) -
R LT N S A £ P S DA

O IR | LTSRS SSY | FYNESNE P SN | FYRERSE—D [}

where ny +---+n, =n.

We may suppose, up to a conjugation of F' by a linear map, that

60'2

:8721

81 g9 (0) (0) =0

it means that the strict transform of the curve o~1(C,,_1) intersects C at the infinite point of
the chart (u,v), i.e. the origin of (u’,v"). This condition is convenient for computations.
When n = 2, we denote by Uy = Uy N 111 (Uy) C Uy and Uyg = Uy Nolly(Up) C Uy the two
connected components of the intersection Uy N Uy of the images in S of Uy and Uy, denoted in
the same way.

If n Z 3, Ui,1'+1 = Ul N H7;+1(U1'+1), 1= 0, ey, — 2, Un—l,O = Un—l N O'Ho(U()).

We refer to [5] for the description of configurations of curves. We index the curves (C;);ez in
the universal covering space following the canonical order (see [5]). Let a(S) = (a;)iez be the
family of positive integers defined by a; = —C?. By [5] p104, this family is periodic of period
n and for any index i € Z we define a positive integer independant of 7,

i+n—1

2n < o,(9) := Z a; < 3n.
=i

The family (a;);ez splits into sequences
SP:(p+272772) and Tm:(2,...,2)

of length respectively p and m, where p > 1 and m > 1. We call s,, (resp. rp,), p > 1 (m > 1)
the singular (resp. regular) sequence of length p (resp. m). We have

p = t{trees} = f{regular sequences}.

2.2 Large families of marked surfaces

With the previous notations, we consider global families of minimal compact surfaces with
the same charts, parameterized by the coordinates of the blown up points on the successive
exceptional curves obtained in the construction of the surfaces and such that any marked
surface with GSS (S, Cp) belongs to at least one of these families. More precisely, let F(z) =



Iy ---II,,_10(2) be a germ associated to any marked surface (S, Cp) with ¢r(S) = 0. In order
to fix the notations we suppose that Cy =11 1(0) meets two other curves (see the picture after
definition 2.6), hence ¢(0) is the intersection of C,,_; with another curve. We suppose that

310'2(0) =0.

We denote by I,(Co) C {0,...,n — 1} the subset of indices which correspond to blown up
points at infinity, that is to say,

Io(Co) :={i | O; is the origin of the chart (uj,v})}.
Each generic blow-up
L (wiyv;) = (wv; + ai—1,v;) or I(uj,v}) = (v + aj—1,ujv))

may be deformed moving the blown up point (a;—1,0). If we do not want to change the
configuration we take

forall k=0,...,p—1 (with ng =0),
Gpytedn,, € (C*7
Vi, 1 <i<l,—1, Apy 4ot ti € C,

Vj, 0 S] S Nk4+1 — l,i - ]., Qpy4-dn +l+j = 0.

The mapping o is supposed to be fixed. We obtain a large family of compact surfaces which
contains S such that all the surfaces S, have the same intersection matrix

M = M(S,) = M(S),
therefore are logarithmic deformations. For J = I(Cp) we denote this family
QMo Sime — Bim
where
Biwm
= C* x Clo=l x {0}m1=lo x ... x C* x Clv7l x {0}t 7le x oo x C*F x Clo—171 x {0} —lo—1
~C*x Clol x .. x C* x Cll x ... x C* x Cle—171
and ny +---+n, =n.
In Sj,0 there is a flat family of divisors D C § with irreducible components
Di, i=0,...,n—1,

such that for every a € Byar, M = (D;q.Dja)o<ij<n—1. We may extend this family towards
smaller or larger strata which produce minimal surfaces:

e On one hand, towards a unique Inoue-Hirzebruch surface: Over
(ClU x{o}nl_lo X - .xClN X{O}"~+1_l~ X X(Clﬂfl X {O}nﬂ_lpfl ~ (ClU X X(Cl*‘v Xoen XCZP*17

(IJJ,U:SJJ—>(CZO><-~-><(CI“" X+ x Clo—1,



If for an index &, an,+...4n, = 0, there is a jump in the configuration of the curves. For
instance, if for all K, kK =0,...,p—1

Api+-dn, = " = Qpui+4odn+l.—1 = 0
we obtain a Inoue-Hirzebruch surface. To be more precise the base
(Clo X e x(ClN X e Xclﬂfl

splits into locally closed submanifolds called strata
— the Zariski open set C* x Clo=1 x ... x C* x Ct+=1 x ...C* x Clo—1—1,

—p= C’; codimension one strata
C* xClolx . x {0} xC*xClx2x ... xC*xCle271 0<k<p—1,

— Cg+pfl codimension p strata, 1 <p:=pg+---+p,_1 <lo+---+1,_1,

{0}P0 x C* x ClomPo=b .. 5 {0}Pr x C* x Cle P ... x {0}Pr=2 x C* x Clo-1 P11

On second hand, towards Enoki surfaces. If for all indices such that O; is at the in-
tersection of two rational curves, in particular for i € J, the blown up point O; is moved
to O; = (a;,0) with a; # 0, all the blown up points become generic, the trace of the
contracting germ is different from 0. We obtain also all the intermediate configurations.

Proposition 2. 7 There is a monomial holomorphic function t : C°®47J — C depending
on the variables a;, j € J such that over By := {|t(a)| < 1} C C", the family ®;, :
Sjo = By may be extended and for every a € By, t(a) = tr (S,).

Proof: The trace of a surface does not depend on the germs associated to this surface
therefore we may suppose that Og = (ag,0) is in the chart (ug,v)), i.e. 0 € J.
Suppose that Card J = 1, then for i # 0, IT; (u;, v;) = (wiv; + a;—1,v;) and

0(2) = (01(2) + an-1,02(2)).

We have

F(z) = To(z) =g (o1(2)oa(z)" " + i a;oa(z)?,02(2))
3=0

(02 (2),01(2)02(2)" + § ajaz(z)j+1>7
§=0

and with our convention on o,

o 610’2(0) 62(72(0) o 0 6202(0) o
tI‘DF(O) =1tr ( 008102(0) a08202(0) ) =tr ( 0 aoaQCTQ(O) ) —0,0820'2(0).

The general case is obtained by the composition F' = Fj o --- o Fy, where N = Card J,
Fy of the type of (#)

mel

Fn(z) = (02(2),01(z)02(2)mN + Z aéyag(z)j+1), my > 1
=0

10



and other Fj have similar expressions with o = Id and my > 1, i.e.

mkfl

Fi(u,v) = (v,uvm’c + Z afij)

=0
with my + -+ +my = n. Therefore
F(z) = (* , 620'2(0)(1(1)(1(2) o aéVZQ)

and tr DF(0) = 0a02(0)agad - - - al). O

Now, B; C C" is an open neighbourhood of
Cl x {O}"“lo X oo x Che x {O}"*‘“’l" X+ x Cle=1 x {O}”f”lf’—l.
and we extend the family
@J,g : SJ’C, — BJ.
thanks to proposition 2.7. We obtain larger strata of minimal surfaces, from dimension

{ + 1 to dimension n.

Example 2. 8 1) Example with 2 curves: For (3,2) = —(C3,C?), J = {1}, Oy = (ao,0)
and O1 = (a1,0) with ag € C*, a; = 0. The stratum of Inoue-Hirzebruch surface (4,2) is
obtained for ag = 0, and generic surfaces are obtained for ag € C, a; # 0. If o(z1,22) =
(Zl + ai, 2’2),

F(z)=To(z) = (22(21 + a1)(z2 + ag), 2z2(z1 + al))

trDF(0) = a1, hence By = C x A.

2) Example with 6 curves: If we start with the sequence
(42 2 3 3 2) = (sor181817m1) = —(Ca,C%,C2,C2,C3,C?)
J =1{1,4,5}, and the blown up points are O; = (a;,0), i =0,...,5 with
apeC*, a1 =0, a>=0, az3e€C*, ay4=0, as;=0.

Strata towards Inoue-Hirzebruch surfaces are

e (522 3 3 2) when az =0,

e (42 2 3 42), when ag =0,

e (522 3 42), when ag = az = 0, which is a Inoue-Hirzebruch surface with one cycle.
Towards Enoki surfaces, we move each non generic point into generic one:
(322332) witha; =0, ag € C*,

222 3 3 2) with a; € C*,

42 22 3 2) with aq € C*,

42 2 3 22) with a5 € C*,

3222 3 2) with a1 =0, ag € C*, ag € C*,
2222 3 2) with a; € C*, a4 € C*,

322 3 22) with a1 =0, ag € C*, a5 € C*,
222 3 22) with a; € C*, a5 € C*,

42 2222) with ay € C*, a5 € C*,

P

11



e (3 22222) with a; =0, ag € C*, ay € C*, a5 € C*,
o (222222) with ay € C*, ay € C*, a5 € C*

__ Remain non minimal surfaces: we still extend the previous family on a small neighbourhood
Bj of By, moving the blown up point transversally to the exceptional curves C; = {v; =
0} U {v; = 0}, introducing n new parameters

I (us, vi) = (wiv; + ai—1,v; + bi—1), or ILi(uj,v)) = (v + a;—1,ujv; + bi—1), |bi1| << 1,

we obtain
®55:850 — By,

with dimé\J = 2n = 2by. Since for any (a,b) € J/S\J, B (Sa b, Oap) = 2b2(Sap) + h°(Sabs Ous),
there are some questions:

e Are the parameters a;,b;, i = 0,...,n — 1, effective ?
e Which parameter to add when h'(S, 4, ©4.5) = 2b2(Sa)+ 1 in order to obtain a complete
family 7

e If we choose 0 = Id or more generally an invertible polynomial mapping, we obtain
a birational polynomial germs. Does this families contain all the isomorphy classes of
surfaces with fixed intersection matrix M 7

Remark 2. 9 It is difficult to determine the mazimal domain E,] over which EIS_],U may be
defined. When the surface is minimal, i.e. when b= (bo,...,bp—1) =0, Fy(0) = 0. However,
when b # 0, the fized point ( = ((1,(2) moves and the existence condition for the corresponding
surface is that the eigenvalues A1 and Ay of DF, ,(() satisfy |N;] <1,i=1,2.

2.3 Minimal and non minimal deformations

Let S = S(F) be a minimal surface with GSS and U = (U, ;41) a Enoki covering of S. We
denote by (e;)o<i<n—1 the base of the free Z-module H» (S, Z) which trivializes the intersection
form, i.e. e;.e; = —d;;. Here a simply minimal divisor is a connected divisor which may be
blown down on a regular point.

Proposition 2. 10 Let EI;JJ : (§J’a— — EJ be a large family of marked surfaces with GSS. Then
foranyi=0,...,n—1 there exists

o A smooth hypersurface H; C EJ,

o A flat family of divisors ® o : & — By \ H;,
such that

1. For any (a,b) € By \ H;, E; (a) is a simply exceptional divisor such that

(s (a,0)] = i
2. Sap) contains a simply exceptional divisor E; (4 ) such that [E; )] = e; if and only if
(CL7 b) ¢ H1'7
3. Any intersection Hy, N---NH; of p different such hypersurfaces is smooth of codimension
.

Proof: The fundamental remark is that (a,b) € H; if and only if in the construction of the
surface S(,p) there is a sequence of indices #,% + j1,...,% + j, = ¢ mod n such that the curve
Ciyj, is blown up by Cjyj, ... If this sequence of blow-ups ends before reaching the index ¢,
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say at i + jg, Ci + Ciqj, + -+ + Ciyj, would be a simply exceptional divisor. Therefore, the
total transform of C; has to check

Oi—1 = (ai—1,biy) € Y - T o7 Y - TIY (C),
or equivalently
Iy10---0ll,_yocollyo---oll;_1(a;—1,b;i—1) € C; = {v; = 0}.
We have
i1 (Wi, vig1) = (Wis1Vig1 + @iy vigr +0;)  or Tipa (uipg, vigg) = (Vigg + @iy Ui Vi +bi)
therefore the condition the equation of H; is
bi + P(ao,bo, .., ai—1,bi—1,ai11,biy1, -y an—1,bp1,01(ai—1,b;_1),02(a;i—1,b;—1)) =0

where
e P is a polynomial,
[ 5(ai_1, bi—l) =00 HO +++ 0 Hi_l(ai_l, bi—l) does not depend on bi,

...and this is the equation of a smooth hypersurface. The third assertion follows readily from
the equations. O

3 Infinitesimal deformations of surfaces with GSS

3.1 Infinitesimal deformations of the families S;,

We define the following cocycles which are the infinitesimal deformations of the families S Jo —
E J:

e For i = 0,...,n — 1, the cocycles #® called the “tangent cocycles” move the blown up
points O; along the curve C; and vanish only (at order two) at the point “at infinity”
CinCi-q,

e Fori=0,...,n— 1, the cocycle i called the “tranversal cocycles” move O; transversaly
to Cz

On a stratum where there are global twisted vector fields we need another infinitesimal defor-
mation it will be defined later.

More precisely,

on Usiit1
9 = ' If O; belongs to the chart (u;,v;)

0 over Ujjtr, j#4

o, on Usita If O; belongs to the chart (u}, v})

i
0 = in particular if O; = C; N Ci_y

0 over Ujjtr, j#1

Since 6 just moves the blown up point O; along the curve C;, all surfaces in these defor-
mations are minimal.
We introduce now n other cocycles which move the blown up point O; transversaly to the
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exceptional curves C;. They yield non minimal surfaces, for instance blown up Hopf surfaces
but also surfaces with GSS blown up k times, 1 < k < n.
Fori=0,...,n—1,

‘ on Ui,i+1
uo= ' If O; belongs to the chart (u;,v;)

0 over Uj,j+17 j #Z

o " Uiint If O; belongs to the chart (u}, v})

in particular if O; = C; NC;_4
0 over Uj7j+17 ] #’L

For any J C {0,...,n—1}, the family §J,,, — EJ is globally endowed with a family of Enoki
coverings. Using the family of Enoki coverings, all the cocycles %, it are globally defined over
Swm,» and give global sections

[97] EHO(EJ,Rl(/ﬁJ,U*@), [//62] GHO(BJ,Rl(/I;J)U*@)’ 2207)71_1
and more precisely for the [ indices ¢ such that O; is generic
[0'] € H(Byn, R'®y.01,04(©(—Log D)).

For any (a,b) € By, the cocycles [0%(a,b)], [ (a,b)] € R'®.O(up) ® C = H'(Sap), Owap)):
i =0,...,n—1 are infinitesimal deformations at (a,b) € B associated to the family §J7o- — By.

3.2 Splitting of the space of infinitesimal deformations

We divide minimal deformation in two types of deformations: logarithmic deformations for
which the intersection matrix of the maximal divisor D does not change, in particular the
surfaces remain minimal, and deformations in which the cycle may be smoothed at some singular
points or disappear and surfaces may become non minimal.

Theorem 3. 11 Let S be a minimal surface containing a GSS with ba(S) = n > 1 rational
curves Dy, ..., Dp_1 such that M(S) is negative definite. Let U be a spc neighbourhood of D,

p the number of trees in D, ry,,...,7,_, the corresponding regular sequences and
p—1
=1
i=0

the sum of the length of the regular sequences which is also the number of generic blow-ups.
Then we have the exact sequence

(%) 0— H'(S,05(—log D)) = H'(S,05) — H"(U,0;y) — 0.
Moreover
dim H'(S,0(—log D)) = I + dim H°(S, Og) = 3b3(S) — 0,,(S) 4+ dim H"(S, Og),

dim H (U, 7)) = 2b2(S) — 1 = 0,,(S) — b2(S).

Proof: Consider the exact sequence on S

(x) 0— Og(—logD) - O©s — Jp =0
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where
Jp :=05/0s(—log D) = @ND”

Supp(Jp) = D, and Np, the normal bundle of D;. The long exact sequence of cohomology
gives

-« — H(D,Jp) = H(S,0¢(—1log D)) — H'(S,05) - HY(D, Jp) — H?*(S,05(—log D)) — - --

If 0 € H°(D, Jp) its restriction p, to each curve D; is a section in the normal bundle Np, of
D;. Since D? < =2, HY(D;, Np,) = 0, hence § = 0 and H°(D, Jp) = 0. Moreover, by [24],
thm (1.3), H%(S,05(—1log D)) = 0, therefore we have

(%) 0— H'(S,05(—log D)) = H'(S,05) = H' (D, Jp) = 0
We compute now H'(D, Jp): the restriction of () to U gives
0 — HY(U,0y(~logD)) - H (U,0y) - H' (D, Jp) =0

since by Siu theorem H?(U, Oy (—log D)) =
Besides, denoting by C the cycle of rational curves and by H = D — C the sum of trees which
meet C, we have the exact sequence

0— Oy(—logD) = Oy(—logC) — Jg — 0

where Jg 1= Op(—1log C)/Oy(—log D) and Supp(Jg) C H.
By [23] lemma (4.3), H'(U, 0y (—1ogC)) = 0, and H(H, Jy) = 0, hence

H'(U,0u(~log D)) =0
With (%) we conclude.
By [3] (see appendix 1), h' (S, ©(—1log D)) = 3b3(S)—0,(S)+h°(S, ©). Moreover 3b3(S)—0,(95)
is the number of generic blown up points O; and also is equal to the sum of lengths of regular
sequences. O

3.3 Infinitesimal non logarithmic deformations
We would like to show that 6°,...,0"~1, u%, ..., u"~! are generically linearly independent. We
suppose that there exists a linear relation

n—1

> (@it + Bip') =0

i=0

We choose the curve Cy such that Oy is a generic point but O,,_ is the intersection of two
curves. Hence Dy the curve in S induced by Cj is the root of a tree. We shall use this fact

later. We have the following linear system where X; is a vector field over U;, 1 =0,...,n — 1:
0
Xo — I, Xy = a5 Bul 508 7 on Uy C U
0
X — i1, X = Qg o + ﬂza Z on Uiy CU;
(E1)
0 0
Xn2— Hn—l*Xn—l = Qp— 28 // + Bn 2672 on Un—2,n—1 CUn2
0 0
Xn—1 — (oIlp) Xo = On-1m " +ﬁn 1T1 on Up_10CUn_1
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where, u/ = u; or u} = ul (vesp. v{ = v; or v} = v}).
We notice that by Hartogs theorem, X; extends to W;, hence X; is tangent to C; for i =
0,...,n — 1; moreover

I, X:1(00) = =11,,-1, Xn_1(0Op_2) = (011y), Xo(Op—1) = 0.

Therefore the i-th equation at O; gives §; = 0.

Remark 3. 12 In fact if we replace the vector field % by any non vanishing transversal vector
field, the proof works as well.

Now, we show that if O; is the intersection point of two curves, then a; = 0. In fact, there
are two cases:

First case O; = C; N C;_1: In the (i — 1)-th equation, X;_; and ﬁ?l or au? are defined
i— i—1

on whole W;_q, therefore it is the same for II;, X;, so II;, X; is tangent to C;_;. As

consequence, X; is tangent to (the strict transform of) C;_; in W;, thus X; vanishes at

the intersection point O; = C; N C;_1. We have

Xi(0;) =41, X:41(0;) =0,

hence «; = 0.

Second case O; = C; N Cy, k < © — 1: Then we have Opy1 = Cg41 N C and by the
previous case,

(1) agt1 = 0, therefore
Xiy1 = Hpyo, Xpyo.

(2) The vector field Xj41 is tangent to Cj, therefore Xjio is tangent to (the strict
transform of) Cj.

If Ogy2 = Cy2 N C, we have

Xi42(Okr2) = Hpy3, Xpy3(Opg2) =0

and ag42 = 0; by induction we prove ait1 = e = -+ = 0 till the moment Oy is not
the point Cjy; N Ck but the point Ciy; N Crii—1. However if it happens it means that
we are in the first case.

We have obtained

Theorem 3. 13 The space of non logarithmic infinitesimal deformations H'(U, Oy) is gen-
erated by the 2bs(S) — I cocycles p', i =0,...,n — 1 and 0° for indices i such that O; is at the
intersection of two curves.

The sequence of blowing-ups splits into subsequences
(Hn1+--~+nm "'Hn1+---+nﬁ+ln71) ° (Hn1+---+nﬁ+lﬁ : "Hn1+--~+nm+nﬂ+rl)7
where Kk = 0,...,p — 1. The indices wich correspond to points O; at the intersection of two

curves are
i:n1+~~~+n,{+lk,...,n1+'~+n,{+n,{+1f1,

therefore for k =0,...,p— 1,

Qnytoodntle = 0 = Oyt g —1 = 0.

The equations (E1) become
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(E2)

Xo —II1,. X,y

Xlo—l - HlO*Xl()
Xlo - Hlo+1*Xlo+1

anfl - Hn1 *an

Xy toetne

Xy oo dn -1

L (O EEREE P, CTRRRE T

Xyttt
oyt 1 X e 41

I 1, X 1

Xn1+“'+7lm+1—1 - Hn1+“'+7ln+1 *Xn1+“'+n~+1

Xy oty

Xn1+--~+np71+lp71*1

_Hn1+~~+np71+lp71 *Xn1+"'+np71+lpfl

Xn1+--*+np—1+lp—1

- H’ﬂ1Jr"'+np71+1*X’ﬂ1+”'+np71+1

0
ag—=— on Wy
c’?uo
qly—1~—— On Wl —1
0 aul071 0
0 on W,
0 on Wy, 1
0
o - -
ket 3un1+...+nn
on 1/1/7114,.4.4,,,1'i

0
Onytotng 1, —1
Oy 4ot —1
on Wi totneti—1
0 on Wi togn, 41,
0 on Wn1+~~+n~+1—1

Oy ety

on

Oy oty

0

8uﬂ1+-“+np—1
Wn1+‘~~+np71

0

Hlp-1—1
aun1+-~+np—1+lp—1*1

Xn—1— (o1lp)Xo

on Wy tqm, 141,11
] DY S . C PR S S 0 on Whitoqn, 141,
Xn1+--~+np72 — Hn1+---+np71*Xn1+---+npfl 0 on Wn1+--~+np72
= 0 on W,_1

It should be noticed that a block may be reduced to one line, if [, = n,4+1 — 1, i.e. if there is
in the block only one blowing-up at the intersection of two curves.

For k =0,...,p—

1, the vector fields Xy, 4 4n 41.,---

17
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a vector field that we shall denote X, y...4n,41,.. Hence setting

4
o=1Ig---1Ij,_1,

!
I =1l 4ot Mg ogome 1,15

/ —
p—1 — Hn1+"'+np71 e Hn1+"'+np71+lp71—1’

I = I - - - I I - -

we reduce the system to

(E3)
Xo — II1, Xy

Xl()—2 - Hlo—l*Xlo—l

"
Xlo*l - O*H an

1%

Xn1+--~+nh- - Hm+--~+nm+1*Xn1+~-+nn+l

D, CHNTNT

L o le— 1 X e 1

Xn1+-~+nm+lﬁ71
"
_HH*HH1+~~+RH+1 *Xn1+"'+nn+1

on

Xn1+"'+np71 - HnlJr"'+np71+1*Xn1+“'+np71+1

Xn1+--~+np71+lp71*2

_Hn1+--~+np71+lp7171*Xn1+'“+np71+lp71*1

X7l1+“'+7lp71+lp71—1 - (HZ—IUHO)*XO

!

1"
0= Hlo e Hnlfl
"o
g = Moy ogmte - Hngogoniga -1

p—1 = Hoytogmpattpon - g gegm -1

1"

p—1-+p—1-
0

ag—=— on Wy
8UO

Qo on W, _o
0 31%—2 0

0

Qly—1

O Ougy—

Ayt tng -, —2
" " Oy oo, —2

on Wyitogn,+i,—2

0

Oy 4o ofnptl—1 — 1
Wn1+~~+nn+lm—1 U---u Wn1+"'+nn+1_1

Anytdngetl,—1

0
« -
ni+-Any_1 8un1+m+n071

on Wn1+-~+np,1

0

9
Uni+-+np_1+l,_1—2
on Wn1+~-+np71+lp71—2

Qny4odn, 141, 1—

0

1
aun1+--~+np71+lp71*1
on Wn1+"'+np—1+lp—l_1 UUWn_l

QAnytodn, 141, 1—

When p =1, i.e. there is only one tree, the linear system reduces to
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0
Xo — 1, Xy = g =— over Wy
8u0
(B4) 0
Xio— 11, X = o2 over W;_s
Ouj—a
" a
X1 — (H OJOH())*XO = 71 over Wi_1U---UW,_1
Ou_q
Corollary 3. 14 A relation among the cocycles [0%] and [u'], i = 0,...,n — 1 contains only

(0] in H(S,©(—Log D)), i.e. indices for which the blown up point O; is generic.

Corollary 3. 15 ([23]) Let S be a Inoue-Hirzebruch surface with Betti number b2(S) =n > 1,
then the cocycles 0% and p', i = 0,...,n — 1 define the versal deformation and the versal
logarithmic deformation is trivial. Moreover an Inoue-Hirzebruch surface S = Sy with two
cycles of rational curves I' and IV can be deformed into a Hopf surface with two elliptic curves
T, and T, blown up respectively —T2 and —T"? times.

Proof: In the explicit construction of Inoue-Hirzebruch surfaces [6], there is no generic blown
up points and h!(S,0) = 2n, hence we have an explicit base of H!(S, ©) and explicit universal
deformation. It is easy to see that any singular point of a cycle may be smoothed for even as
well odd Inoue-Hirzebruch surface. ]

For moduli space of Oeljeklaus-Toma see [25] or section 4 below.

Corollary 3. 16 Fiz any J, M, o and consider a large family ®;, : S;, — By, then the
image of the stratum By in the Oeljeklaus-Toma moduli space of surfaces with intersection
matrix M contains an open set.

Proof: Any large family degenerates to Inoue-Hirzebruch surfaces and at the point O;g € By
corresponding to this Inoue-Hirzebruch surface, the family is versal. The point O;g is in the
closure of any stratum. By openess of the versality it is versal in a neighbourhood hence on an
open set of any stratum. Since the family is generically versal, the image in Oeljeklaus Toma
coarse moduli space contains an open set. O

3.4 Infinitesimal logarithmic deformations

A relation is only possible among infinitesimal logarithmic deformation. In fact it cannot
contain #° when the curve C; meets two other curves. In order to be readable and to avoid
an overflow of notations, we give a complete proof for surfaces with only one tree and we
postpone it to the appendix. The idea of the computation is to work in the first infinitesimal
neighbourhood of the maximal divisor. Vanishing of other coefficients should imply to work (if
possible) in the successive infinitesimal neighbourhoods.

Proposition 3. 17 Let (S,Cy) be a marked surface. If 27701 a;[0'] = 0 is a relation, then

1=

ar = 0 for any index k such that one of the two conditions is fulfilled
o Oy is the intersection of two rational curves,
o Oy, is a generic point but Cy meets two other curves.

In particular, if the unique regular sequences r,, are reduced to one curve (i.e. m = 1),
{167, [1] 1 0 < i < n—1} (resp. {[0Y] | O; is a generic point}) is an independant family
of HY(S,0) (resp. of H'(S,©(—LogD))) and a base if there is no non trivial global vector
fields.

19



Remark 3. 18 By induction it is possible to show that for any k <r+s— (p+ q), a similar
Cramer system may by defined and that cp, = 0. However, it is not possible to achieve the proof
in this way because when k = r+s—(p+q) a new unknown appears. This difficulty is explained
by the fact that in general there is a relation or a class vanishes among the 6% ’s.

3.5 Existence of relations among the tangent cocycles

In this section we show that the cocycles {6; | O; is generic} cannot be linearly independant
everywhere, there exist an obstruction.

Lemma 3. 19 Let S be a minimal surface containing a GSS for which n = by(S) > 2 and
HO(S,0) #0 and tr(S) = 0. Let (S,®,U) be the versal deformation of S ~ Sy, and

n—1
Z={ueU|h(S,,0,) >0}, M=()Hi={ucU]|S, is minimal}
i=0
and
T ={uelU|tu) =0},
where t(u) = tr(Sy) is the trace of S,. Then
i) ZN(M\T) is empty,
ii) codim Z > 2.
Proof: 1) The only minimal surfaces S, with ¢(u) # 0 which admit a non-trivial vector field
are Inoue surfaces with an elliptic curve E such that E? = —n and for such surfaces we have
K~! = [E + D], in particular we have also h(S,, K~1) # 0.
2) Denote by K the relative canonical line bundle. Suppose there exists a sequence of points
(up) in M\ T with
lim u, =0 and h%(S,,,0.,,) # 0.

pP—>0

Then h%(S,, . K;pl) # 0 and by Grauert semi-continuity theorem, h°(Sp, K5 ') # 0. Therefore
S has, in the same time, non-trivial vector fields and non-trivial sections of —K. However, if
there are topologically trivial line bundles L* and L* such that,

H°(S,0® L") #0, and H°(S,K '@ L") #0

the relation between A and k is by [9], A = k(S)k, with k(S) > 2, therefore it is impossible and
we have 7).
3) If the configuration of curves allows the existence of twisted vector fields (see [9]),

0 € H(S,, 0, ® L*W),

the holomorphic function A is non constant on the logarithmic deformation of S. There is a
non-trivial vector field on S, if and only if A(u) = 1, therefore codim pynrZ NM NT > 1 in
M NT. With 4), it shows that codim ,;Z N M > 2 in M and i) follows. O

Lemma 3. 20 Let (S, Cy) be a marked minimal surface containing a GSS of intermediate type
with n = ba(S). Let (Sy0, Py, By) be a large family of minimal marked surfaces containing
S. Then, there exists a non empty hypersurface Ty, such that the family

{66,510 <i<n—1}

is linearly independent in H(S,,0,) if and only if a € By \ Ty,.
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Proof: Since the family {67, ui | 0 < i < mn — 1} is linearly independant in a neighbourhood of
the Inoue-Hirzebruch surface, there is at most a hypersurface over which there exist relations.
We take £ = © with

Z ={a € By, | h°(S4.04) # 0},

which is at least 2-codimensional by lemma 3.19, and we apply the theorem 6.70 of Appendix
11 O

Theorem 3. 21 Let (S,Cy) be a minimal marked surface containing a GSS of intermediate
type, with n = by(S). Let J = Io(Cy) and let 5, : Sy, — By be the family of surfaces with
GSS associated to J and o. Then, there exists a non empty hypersurface T;, C B containing
Z ={u € B| h°(Sy,0,) > 0} such that foru € B;\ Ty,

a) {163, [18) | 0 < i < n— 1} is a base of H(S,,0,),
b) {[0] | O; is generic} is a base of H(S,,O0,(—Log D.,)).
Moreover
i) If Ty, intersects a stratum By then Tyo N By is a hypersurface in By,

it) Ty, intersect each stratum By such that the corresponding surfaces admit twisted vector
fields and Z N BJ’]\/[ C T],o‘,

Proof: At the point @ = (a;) where a; = 0 for all 4, S, is a Inoue-Hirzebruch surface. By
Corollary 3.15, the family {[0%], [¢'] | 0 <i < n — 1} is a base of H'(S,,0,) therefore has the
same property in a neighbourhood. Outside Z, R'II, O is locally free sheaf of rank 2n, therefore
this family is free outside perhaps a hypersurface T';,. At a generic point of a € B, S, is a
Enoki surface. If a; = 0 for exactly one index i € J, we have 0,(S,) = 2n + 1 and for this
configuration of curves there exists twisted vector fields, therefore by lemma 3.20, Ty, is not
empty and contains Z. This gives ii).

i) If T, which is closed, contains a stratum By as it contains smaller strata, in particular the
Inoue-Hirzebruch surface, which is impossible. O

Remark 3. 22 1) It is possible to prove that Ty, does not intersect those strata near Inoue-
Hirzebruch surfaces which have only regular sequences 1.

2) We shall see that for o = Id, any surfaces with only one tree, Tj, is a ramification locus of
By, over the Oeljeklaus-Toma moduli space.

4 Moduli spaces of surfaces with GSS

The goal of this section is to compare the Oeljeklaus-Toma logarithmic families of surfaces with
the strata in large families of surfaces ® j s : Sy ar,0 — Bjm which have the same intersection
matrix M. In the case of surfaces with only one tree it turns out that we obtain all the surfaces.

4.1 Oeljeklaus-Toma logarithmically versal family

We recall the results of [25] used in the sequel with a small correction described in the remark
4.26.

All surfaces of intermediate type may be obtained from a polynomial germ in the following
normal form obtained by [13] and improved by [25].

sk
T—

(CG) F(z1,22) = (A2123 + P(22) + ¢z} ', 25)
where k,s € Z, k> 1,5 >0, A € C*,
P(z) = ¢z + ¢z 4+ ca2s
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is a complex polynomial satisfying the conditions
O0<j<k, j<s, ¢ =1 ceC, gcd{k,m|ec,#0}=1

with ¢ = 0 whenever

2@ Zor A# 1.

Lemma 4. 23 ([25],84) Two polynomial germs F and

sk

F(z1,2) = (5\2125—1—}5(22) + ¢z, zé),

in normal form (CG) are conjugated if and only if there exists € € C, =1 =1 such that

~ g sk

k=Fk S=s5 A=¢€\ P(zn)=c’Plezn), é=c-ic

Intermediate surfaces admitting a global non-trivial twisted vector field or a non-trivial
section of the anticanonical line bundle are exactly those for which (k —1) | s. When moreover
A =1 we have a non-trivial global vector field.

Definition 4. 24 Let S be a surface containing a GSS. The least integer > 1 such that there
exists k € C* for which
HO(S, K" @ L") # 0

is called the index of S.

If S is defined by the polynomial germ

(CG) F(z1,20) = (\n1#§ + Plz2) + cz) ', 28)
then by [25] Remark 4.5,
. k—1

Notice that these germs show the existence of a foliation whose leaves are defined by {zo =
constant}, however they are not birational.
The set of polynomial germs

F(z1,29) = (Az125 + P(22), 25)

with ¢ = 0 are called in pure normal form.

Definition 4. 25 ([25] Def 4.7) For fized k and s and for a polynomial germ
sk
(CaG) F(z1,22) = (A\2125 + P(22) + cz5 1, 25)

we define inductively the following finite sequences of integers

jJ=mp <---<m,<s, and k>id >0 > >0, =1,

by:
(i) my :=j, i1 := ged(k,mq),
(it) mo = min{m > ma_1 | cm # 0,8cd(ia—1,m) < iq-1}, ia = ged(k,ma,...,mq) =

ged(in—_1,Mq),
(i11) 1 =i, = ged(k,ma,...,mp—1,m,) < ged(k,mq,...,m,_1).

We call (my,...,m,) the type of F' and p the length of the type. If p = 1, we say that F
is simple.
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By [25], §6, the length of the type is exactly the number p of trees previously introduced.

Remark 4. 26 1) If the length is p = 1, then ged(k,j) = 1 and there is no extra condition
on the coefficients cji1,...,cs, therefore the parameter space of polynomial germs in pure form
with integers k,s and type j s

Uk757j =C* x C5J.

If the length of the type is p > 2, notice that by definition, we have ¢y, € C*, ao=1,...,p,
and ¢, = c¢; = 1, however between ¢y, and ¢y, ., , the coefficients

Crmg+ias Cma+2iayr- -1 C ma+1—ma]i eC
— |t

ia

mat|
may take any value, but all the other coefficients from cp, 41 to ¢y, —1 should vanish. Let
2 [ast —m
e(k,s,m1,...,m,) = el Pel bt om
(s mp) o= 3| :

then the parameter space of all the germs F with the same integers s,k and of the same type
(m1,...,m,) in pure form are parameterized by

(C*)p ~ Ce(k,s,ml ..... mp).
There exists a family of surfaces
. — ((C*)p % (Ce(kﬁ,mh...,mp)
..... B

such that for every u € (C*)? x Ce(k:sm1m0) -G s associated to the germ F,. We have

Theorem and Definition 4. 27 ([25], thm 7.13) With the above notations we have:
o If k — 1 does not divide s, the family

* e(k,s,m1,....mp) __.
Sk»svmlw"vms - ((C )p x C ( ! ») - Uk,ﬁ,ml,...,mp

is logarithmically versal at every point and contains all surfaces with parameters s,k and
type (ma,...,m,).
o [fk— 1 divides s, the family

* e(k,s,m1,....m .
Skvﬁvm'lv"'vmp - ((C )p xC ( ! ) xC=: Uk157m1,-~~7

mp
e is logarithmically complete at every point,
e is logarithmically versal at every point of
VT hannm, = (€77 x Cellomiime) s €
and its restriction
A=1
Sk,s,ml,... mp — Uk,s,ml,...,m;,
contains all surfaces with parameters s,k and type (m1,...,m,) admitting a non-

trivial global vector field,

Moreover its restrition

Sk,s,ml,m,mp S C \ {0’ 1} % (C*)p—l % Ce(k,ﬁ,ml,.“,mp) — U)\;éLCZO

k,5,m1,...,m,

1s logarithmically versal at every point and contains all surfaces with parameters k, s and
type (ma, ..., m,) without non-trivial global vector fields.
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We shall call this family the Oeljeklaus-Toma logarithmic family of parameters k, s
and type (mi,...,m,).

By lemma (23), for fixed k,s and type (m1,...,m,), Z/(k—1) acts on the germs in pure normal
form. By [25] (7.14),

o My smy,...om, = Uk,s,ml,...,mp/(Z/(k - 1)) if £ — 1 does not divide s,

MA#I,C:O .— U)\#l c= 0, p/(Z/(k o 1))

k,s,m1,...,mp k,s,m1,

* if £ — 1 divides s,
M oy = Uy (2 (6 = 1),

are coarse moduli spaces, moreover the canonical mappings are ramified covering spaces. By

. . . . A#£1,c=0 A=1
lemma 4.23, the ramification set is the union T s m,,....m, (resp. Tk S Tk,s,ml,...,mp) of

hypersurfaces {¢; = 0}, with j + 1 < i < s such that ¢; € C, in partlcular

Ulc 5,M1,...,Mp \ Tk,s,ml,...,mp — Mk,s,ml,...,m
1 1,c=
/\# ,C= 0 _>M/\7£ ,C 0

k5m1 ..... \ ksml ..... mp k,s,m1,..., mp

A=1
Uk,s,ml mp \Tk5m1 ..... mp - Mk5m1 ..... mp

.....

are non ramified covering spaces having k — 1 sheets.

Remark 4. 28 When k—1 divides s, all the surfaces over the fiber (X, a,b) x C with (A, a,b) €
C\ {0,1} x (C*)P=1 x CPsmimmo) gre jsomorphic. Moreover

Uiamnsomy /(2 (k= 1)) UURTC (2 (k — 1))

s not separated. In fact, denote by

Fro(z1,22) = (\nazs + P(za) +c2f 1, 25).
Then any neighbourhood of F1 . with ¢ # 0 meets any neighbourhood of Fi o because if X # 1,
F\ .~ F\p.
Proposition and Definition 4. 29 If k — 1 divides s, the restriction

80 _>((C*) X(Cekgmh ome) _Uk5m17

k)57m1>~~-7mp My

of the family
Skysmi,..m, = (C*)P x CWom™1m0) 5 C = U g my o,

will be called the Oeljeklaus-Toma family of pure surfaces. It is versal at every point of
C\ {0,1} x (C*)P~1 x Cerooomamy)
and effective at every point of
{1} x (C*)P~1 x Cetsimume)

Since the hypersurface (C*)? x C(*:sm1m0) 5 {0} is invariant under the action of Z/(k — 1)
by (23), the projection

r ((C*)” w CeFssma,mp) o ((C*)" w Celksma,.omp) o {0}
induces a holomorphic mapping

p: (C*)F x Cobeminemmo) 5 C/(Z)(k — 1)) — (C*)F x Cksminmmo) 5 L0} /(Z/(k — 1)).
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4.2 The generically logarithmically versal family S/,

Notice that by [25]§6, k,t and the integers (my,...,m,) determine completely the sequence of
self-intersections of the rationals curves, i.e. the invariant o,(S) and the intersection matrix
M = M(S). We have two families of logarithmic deformations, the first one

Simo — Bry = (C* x Co71) x .o x (C* x C 1) x - oo x (C* x Cle—2 71y,
is generically versal by (3.21), the second one
Sksosmismy = Unaima,.om, = C} x (C*)P71 x Cekammi.mp)
is versal at every point, therefore
dim B,y = dim(C*)? x Crmmame),

l:p+€(k707mla"'amp)7

and the bases are equal up to permutation of the factors.

Lemma 4. 30 Let (gq)acn, be a differentiable family of Gauduchon metrics on @, : Sy —
By, w, be its associated (1,1) form and let

deg, : H(S,,0%) =R, deg, (L) = [S c1(L) A wq

be the degree of a line bundle. Then there is a non vanishing differentiable negative function
C:Bjy— Rx
such that for any L* € H'(S,,C*) ~ C*,
deg,, (L) = C(a)log|A|.

Proof: For any a € B; the Lie group morphism deg, : HY(S,,C*) ~ C* — R has the form
deg, (L*) = Clog|A| where C' # 0 since this morphism is surjective. Besides the family of
Gauduchon metric depends differentiably on a € Bj,therefore C' : By — R is always positive
or always negative. Now, on Enoki surfaces S,, denote by I', the topologically trivial cycle of
rational curves. Then, by Gauduchon theorem [14], [22], and [9]

vol(L'y) = deg,, ([Ta]) = degy, (L") = C(a) log|t(a)|

where t(a) = tr (S,) is the trace of the surface satisfies 0 < |t(a)| < 1, therefore C'(a) < 0. Since
C(a) < 0 when S, is a Enoki surface, C'(a) < 0 everywhere. O
Remark that a numerically Q-anticanonical divisor D_g on a surface S is a solution of a
linear system whose matrix is the intersection matrix M = M (S) of S. Therefore the index is
the least integer m such that mD_k is a divisor and this integer is fixed on any logarithmic
family (I)]}M’g : SJ’M’O— — B‘]’M.
sk
Lemma 4. 31 Let F(z1,20) = (A212§ + P(22) + cz9 ', 25) be a Favre contracting germ as-
sociated to a surface of intermediate type S. Let u = index(S) € N* and k € C* such that
HO(S,K§ ™" ® L") #0. Then
k=k(S)HFA\TH

25



O
Proof: A global section § € HY(S, K~# ® L") induces a germ 6 = 25 A(z) (6%1 A 3%2) which
satisfies the condition i
0(F(2)) = /i(det DF(Z)) 0(2),

where « is the vanishing order of @ along C,,_; and A(0) # 0. Since det DF(z) = Mkz3 T+,
comparison of lower degree terms gives

ZFA(0) = k(M) ETETDT 4 (0)
hence
alk—1)=pulk—1+5)
Kk =k(S)"HATH
O

Lemma 4. 32 Let S be a minimal complex surface, p the index of S and x such that H°(S, K®~+®
L®) #0. Then a section of K®~* ® L* vanishes on all the rational curves in S.

Proof: Let D;, i =0,...,n— 1 be the n rational curves in S and suppose that

n—1
K® @ L =Y kD
i=0
We have k; > 0 for all i = 0,...,n — 1; if one coeflicient vanishes, say ko = 0, on one hand,
since the maximal divisor is connected,

n—1
c1(K® " @ LF).Dy =Y k;D;iDy >0

i=1
and on second hand, by adjunction formula
e1(K®" @ L").Dg = —per (K).Dg = p(DZ +2) < 0
we obtain a contradiction. |

Proposition 4. 33 Let @6 : Symoe — By be a logarithmic family of marked intermedi-
ate surfaces with J # 0 and u the common index of the surfaces. Then
1) there exists a unique surjective holomorphic function

k=KMo Bru — C*
a +— k(a)

such that H(Sq, Kg" @ L*®)) # 0.
2) If the surfaces admit twisted vector fields there exists a unique surjective holomorphic function

)\:)\J,M)o—: BL]’M — C*
a — Ma)

such that the marked surface (Sq,Co,q) is defined by a germ of the form
Fo(z1,22) = (Ma)z125 + Pa(22), 25).

3) The fibers Ko := {k = a} (resp. Ay :={A =a}), a € C*, are closed in By hence analytic
m By D BJ’M.

4) Let m C By be the closure of By in By, i.e. the union of By with the smaller strata,
then Ky e extends holomorphically to Ky : By — C and m;i(O) =Bym \Bim.
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Proof: 1) For a € By, the complex number r(a) satisfies h°(S,, Kg" ® LE@)Y = 1. Tt is
unique because there is no topologically trivial divisor.
We consider a new base space By x C*, and let

pri: By x C° = By,

be the first projection. Let K — S - be the relative canonical line bundle and £ — Sj a6 X
C* be the tautological line bundle such that L, , is the line bundle L™ over S,. We consider
the family of rank one vector bundles

p’l"f’C [029] L: — p’l"fSJyng Prlﬁgu,a BJyM X (C*.
Then (priK ® L), o) = Ka @ L*. The set of points
Z ={(a,a) € Byy x C* | h%(S,, K, ® L*) > 0}

is an analytic subset. Let
pr: 7 — BJ7M

be the restriction to Z of the first projection pry over B ps. Then pr is surjective by hypothesis.
Each fiber contains only one point. Moreover pr is proper: in fact we consider the closure
Z C By x P1(C). By Remmert-Stein theorem, either Z is an analytic set in By x P1(C)
or contains at least one of the hypersurfaces By x {0} or By x {oo}. But it is impossible
because each fiber contains only one point. Therefore Z is analytic and pr : Z — By is
proper hence a ramified covering. Since there is only one sheet, it is the graph of a holomorphic
mapping « : By — PY(C). Since for every a € By, pr—'(a) contains exactly one point in
C*, k has only values in C*.

Now, k cannot be constant because k = (kX)™# and ) is a parameter of a logarithmic versal
family, therefore the non-constant mapping & : (C*)? x C'=7 — C* is surjective.

2) By lemma 4.31, k = k1AL

3) Consider the hypersurface {x = a} C By s for a € C*. The closure By of By in By is
the union of By js with lower strata, hence B ar \ By is also a hypersurface. Remmert-Stein

theorem shows that {x = a} is analytic or contains an irreducible component of B s \ By .
However the second possibility is excluded by Grauert semi-continuity theorem because on a
whole stratum we would have H°(S,, K~* ® L) # 0 which is impossible because the twisting
parameter is not constant. Therefore the slice has an extension. If {x = a} N (B \ Bsm) #
0, the line bundle K=* ® L® has a section over S .o [(nza} hence the zero locus which is

the union of all the rational curves by [9] would be is a flat family of divisors; however it
is impossible because the configuration changes contradicting flatness (it can be seen that
the curve whose self-intersection decreases has a volume which tends to infinity (see [12])).
Therefore {k = a} N (B; \ Bju) = 0 and each slice is already closed in B ;.

4) Since the fibers K,, are closed in By,

lim Ky M,e(a) =0 or co.
ll_)BJYM\BJ‘M

Let K be the relative canonical line bundle, § € H°(Sj .., K™* @ L¥) be the flat family of
sections over B s and Z the associated divisor of zeroes of 6. By lemma 4.30,

vol(Z,) = deg,, ([Za]) = deg,, (K" ® L**) = —pdeg,, (K,) + C(a)log|x(a)l

Since a ~ deg, (K,) is differentiable, hence bounded, and vol(Z,) > 0, the limit of k =

KMo (a) near By pr\ By cannot be oo, therefore s extends continuously and holomorphically.
O
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Remark 4. 34 1) If index(S) = 1, we have \™! = k(S)k, i.e. the invariant used here is the
inverse of the invariant A = \(S) in [9].
2) If index(S) # 1, A(a) is defined up to a (k — 1)-root of unity.
Lemma 4. 35 Let S be a surface with GSS such that the dual graph of the curves admits
exactly one tree. We choose the numbering such that the first blowing-ups are non generic and
the last I > 1 ones generic. More precisely

e Oy € Cy is the origin of the chart (uf,v), hence Iy (ug, vj) = (vh, uGv})
O, € C; is the origin of the chart (u;,v;) or (uj,v}) fori=1,...,.n—1—1,
Onfl = (an,l, 0) S Cnfl with Ap—] € (C*, Hn,l(un,l,vn,l) = (un,lvn,hvn,l),
e 0,=(a;,0)€C;,i=n—-1+1,...,n—1 is in the chart (u;,v;) and

(
I (s, vi) = (w05 + @i—1, v;).

We suppose that with this choice (the induced curve by C,_; is the root of the tree), o is a
polynomial isomorphism of the special form

0(z1,22) = (01(2) + an—1,02(2)) = (21 + €25 + an—1,22), u>1.

Let p = index(X) be the index of S. Then on the corresponding base By of the family
Dot Syme — By, the holomorphic function

K= KJ Mo :Cr—>C*
such that HY(S,, K;a” ® L™®)) = 0 is a monomial holomorphic function of a,_;, where Op_; =
(an-1,0). More precisely, if 6 =ps—qr ando=p+q+1—1,

Ty —pt+1 ro
waatolan) = any T T e
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Proof: Let k := Kk, be the holomorphic function given by the proposition 4.33. We have

n—2
anl o anlo'(z) = ((21 + gz’l2L + anfl)zé + Z aizéin+i+17 22)

i=n—I

e
1 l—ntit1
(zlzé + 25T 4 E ajzy "L zz>

i=n—I
I - - Hn—l—l(U”, 1}”) _ (u//pv//q, uurvus)’
with
(W' 0") = (up—i-1,vp—1-1) or (u',0") = (w1 v 1), P, q<s, prg<r+s.

Combining these two expressions and using the special form of o, the expression of F is

n—
F(z)=Mo = ((zlzé + et Z aizy” "J”J“l) 2, (zlz2 + b+ Z aiz l_"““) z§> ,

i=n—I i=n—I

with Qg1 7é 0.
Setting

() = <z122 P Z a;izh” ”“H) and

i=n—I1

H ::aizz() lz 257t €14 u) 2=t ¢ Z il —n+i4 1)

1=n—

A4 ) e (e
()7 () e () e

p+r—1
det DF(Z) = (ps _ qr)( ) Zé+q+571.

DF(z) =
and

Let 6 € H(S, K" ® L"), then there exists an invariant germ in a neighbourhood of the origin
of the ball still denoted by € which vanishes on the curves

em—@m>QiA£Jm

such that A(0) # 0. This germ satisfies the condition
0(F(z)) = r(det DF(Z))HG(Z),

which is equivalent to

()" 5 AF=) = sos — ar) ()

where § := ps — qr = £1. Considering the homogeneous part of lower degree of each member,
we obtain

w(p+r—1) Dta
AUTITTITNAG)

(1) afr+s—1)=pp+qg+l—-1+r+s—1)=pulc+r+s—1)
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_ ar—p(p+r—1)
(2). K= (ps —qr)'a, "7

By proposition 4.8 3), x vanishes on smaller strata, therefore ar — u(p +r —1) > 0. We derive
the value of x from (1) and (2). O

Remark that any F' = Ilo with p trees splits into p contracting germs
F=g---T, 1)L, - Ty ) -~ (I, - T, 10)

If we decompose trivially II;; into ajH;j, j=1,...,p—1, 0, =0 with

I (us, i) = (v, uj,vp)) = (21,22),  0(21,22) = (21, 22) = (us;—1,i,-1)

we have the decomposition
F=Fyo---oFjo---0F, 4,

with F} := H;j I, 4114, 10541, such that each germ Fj is the germ of a marked surface

S; with one tree which satisfies the conditions of lemma 4.35. Notice that there is a unique
index k;, ¢; +1 < k; < 4;41 — 1 such that ij meets two other curves.

Proposition 4. 36 Let F' = Ilo = Fyo--- 0 F,_1 where each F; satisfies the conditions of
lemma 4.35. Let p = index(S) € N* and k € C* such that H°(S,Kg" @ L*) # 0. Then x
depends only on the coordinates a; € C* of the generic blown up points O; = (a;,0) € C; such
that C; meets two other curves (i.e. is the root of a tree). More precisely there is a surjective
monomial function of the variables ay; € C*, j=0,...,p—1

H:KJ7M7O—:BJ7M—>(C*

such that
e forac BJ,M,
HO(S“’Kga# ® Li{J,M,cr(a)) £0

® Kjm,e extends holomorphically to ks : By — C such ﬁ;},(O) =Bym \Bsum-

Proof: The integer 1 depends only on the intersection matrix M, hence is constant on B .
The complex number x depends only on the isomorphism class of the surface, hence does not
depend on the choice of the germ. Let F' be the chosen germ and G a Favre germ in the
conjugation class of F. The germ G(z) = (Az125" + -+ ,25) has a unique Oeljeklaus-Toma
decomposition (see [25] Prop. 5.10)

G=Goo---0Gjo-0G,1, Gi(z)=Nz125" +-,25°).

The invariants k and A are multiplicative, therefore

p—1 p—1
k=k(S) =[]k, r=][»
=0 =0
By lemma 4.35,
pi(rils+psits;—6:—1)
Kj = 5;”%; R ,  with i rgly +p 85— 05— 1) e N*

’I"j-i-Sj—l
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and by lemma 4.31,

—p —p —p
p—1 p—1 p—1
k= k()2 = | [ & 1] =(I]%N
j=0 Jj=0 j=0
Setting u' = H;);é i, we have,
p—1 y - / 2 (rJzJ+pJ+s-—6-—1>
' =TT (s)" H(é“ Pig, >
i=0 =0 K

is a monomial function of the variables aj, therefore (k"')~1(0) = Byar \ Byn. Moreover

lim k(a) =0,
a%B,]YM\B,],M

We conclude by Riemann theorem that s is a holomorphic function on Bjas. A power is
monomial, therefore x is itself monomial and

p(rsly +pj+s5—0; —1)

€ N*.
T'j+$j71

4.3 Surfaces with b, = 2.

4.3.1 Rational curves

Up to a circular permutation intersection matrix and configuration of the curves Dy and D1
are the following:

e Surfaces of trace t # 0: Enoki surfaces and Inoue surfaces,

M(S):<_§ _;>7 [Do] =eg—e1, [Di]=e1—eo, [Do]+[D1]=0

-2

e Intermediate surface

-1 1
M(S)( 1 _2>a [Do] =eg —e1 —eg = —e1, [Di] =e1 —eop.

31



e Inoue-Hirzebruch surfaces
—4 2
M(S) = < 9 _9 ) . [Do] = eg—e1—eg—e1 = —2e1, [D1] =ei1—ey, [Do]+[D1] = —eo,

-1 0

%

4.3.2 Intermediate surfaces

We consider intermediate surfaces S, since the problem of normal forms is solved for the other
cases. There are two curves: one rational curve with a double point D? = —1 with one tree
D% = —2, DyD; = 1. Favre polynomial germs are

Fu(21,20) = (Az120 + 20 + c23, 23)
where k = k(S) = 2, s = 1. Invariant vector fields 6 exist if and only if A = 1 in which case

9

0(z) = azg/(k_l) =azn—, acC

Intermediate surfaces belong to three families, namely for J = {0}, J = {1} and J = {0, 1}.
Case J = {0}

The case J = {1} is similar.

The family of germs defining surfaces of ® ;7,5 : Sy a0 = By are

Gi(zl,zg) = Gu(z1,22) = (2,’2, (z1 + al)zg)7 ap €C*, a=(0,a1)

G (2,2,) =1L 1L 0(2,25)=(2, , (zl—l—al)zg)

/_\ (v'u'v'")
v C={2=0}
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A germ of isomorphism ¢ which conjugates G, and G, leaves the line {23 = 0} invariant,
therefore ¢ has the form p(z) = (¢1(2), Bz2(1+6(2)). A simple computation shows that if G,
and G are conjugated then

a; = :|:CL/1.

Besides if we want to determine the twisting parameter » such that H(S, K~! ® L*) # 0, we

have to solve the equation
w(Go(2)) = kdet DG, (2) ().

Using the relation D_x = Dy + D of [9] or by a direct computation, we know that a section
u of the twisted anticanonical bundle has to vanish at order two along the cycle, i.e. along
{z2 = 0}, therefore p(z) = z%A(z)a%1 A 8%2 where A(0) # 0. A straightforward computation or

lemma 4.35 shows that

2
K= —aj.

By [9] the relation between the twisting parameters k£ and X chosen so that H°(S,0® LX) #0,
is A\ = kr. Here k = k(S) = 2, therefore A = —2a? and
e There is a non-trivial global global vector field if and only if A =1ifand only if

1
2—77
ay = —3

e Since \ = 1/X € C* is a parameter of the coarse moduli space, GG, is conjugated to G

if and only if the corresponding surfaces S(G,) and S(G,/) are isomorphic if and only if
a? = af?. In particular the mapping C* = B — By 11 = C* is 2-sheeted non ramified
covering space

We are now looking for the missing parameter: we choose o(z) = (21 + €22 + a1, 22); the
infinitesimal deformation is 9

X(ul,vl) = '01871“.

With
Gayé(zlv Z2) = (Z2a (Zl + 20 + al)zg)

the same computation gives k = —a2. With a fixed such that a? = —1/2 (in order to have a
global vector field), the conjugation relation

P(Gae(2) = Fe((2))

yields the relations

(1) 1 (22 (21 + €22+ )33 ) = Baa | (14 p1(2))(1+6(2)) + eBza(1 + 6(2))%|

(II) (Zl + 522 —+ a1)<1 + 0(22, (Zl + 622 + al)z%)) = B(l —+ 9(2))2

we compare the homogeneous parts of the same degree
e till degree two and homogeneous part z123 in (1)
e till degree one and homogeneous part 2% in (I1)

A straightforward computation with a? = —1/2 yields
c=&+ 2.

Therefore all surfaces with global vector fields are obtained when £ moves in C, and X acts
by translation. In particular when b2(S) = 2, all surfaces are obtained by simple birational
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mappings obtained by composition of blowing-ups and an affine map at a suitable place.
We extend the family to Enoki surfaces. The family of marked surfaces ®;, : S;, — By is
defined by the family of polynomial germs

Ga(z1,22) = (22,75 (21 + a1) + aoz2), a = (ag,a1)

We have
tr (S) = tr DG,(0) = ag

therefore |ag| < 1. The open set By = A,, X C,, has the following strata

intermediate surface (2,3
IH surface (2,4) 23)

Enoki surfaces / /
) i2

_iz (00 i2
2 2

ay

Notice that for ¢(z1,22) = (=21, —22),
¢ Glaga) ©¢ " = Glag,—ar)s
therefore there is an involution
i1: By — By, i(ag,a1) = (ag,—a1),

such that G, and Gj(,) give isomorphic surfaces.
Moreover there is also the hypersurface 7'y, where there is a relation. The sheaf of relations is
generated by global section by theorem A of Cartan. Let

ao(a)[fo] + Bo(a)[po] + a1(a)[01] + Bi(a)[u1] =0

be such a relation. By the same computation as at the beginning of section 3.3,

Bo=p1 =0,
therefore we have to solve the system
0 .
Xo — 111, X, = aoa— at the point ITj (uy,v1)
Uo

X1 — ol Xy =

g at the point oIy (ug, vj)
Ui

We have
0 1
Do) = (5 ). Dt = (5 ).

vy up
Since by Hartogs theorem the vector fields Xy and X; extend on the whole blown up ball, they
are tangent to the exceptional curves and we set

0 15} 0 0
0 0 il + v 03v07 1 1 9, +v1 51 I

By a straightforward computation similar to those in the appendix we derive that

ap(ag,a1) =0,
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for all minimal surfaces, therefore [fy] # 0 on A,, X C,, (recall that tr(S,) = ag and the trace
is a holomorphic invariant) .
By proposition 3.17, the four cocycles are independent on the line {ag = 0}, hence a;(0,a;) = 0,
and the relation reduces to

0[1((1)[91} =0

with a1(0,a1) = 0. Therefore T, N{ap = 0} = {(0, :I:%)}, [61] = 0 along Ty, \ {ao = 0} but
[61] # 0 at the two points where © is not locally free. The mapping from the stratum of Enoki
surface to the moduli space of Enoki surfaces is discrete and ramified along T, and {a; = 0}.

Case J = {0,1}
With o(z) = (21 + a1, 22), the family of marked surfaces ®;, : S;, — By is associated to the
family of polynomial germs

Gg(ZbZQ) =Go(21,22) = (22(21 +ay), z2(21 +ar)(z2 + ao))
det DGy(z1,22) = z%(zl +a1),
tr (Sq) = tr DG, (0) = apay, with |agai| < 1.

There are two lines of intermediate surfaces which meet at the Inoue-Hirzebruch surface with
two singular rational curves.

intermediate (2,3)

intermediate (3,2)

Enoki surfaces

IH (3,3)

e Forag=0,a; #0, k =ay,
e Fora; =0,a9#0, k= ap.
The involution of the Inoue-Hirzebruch surface which swaps the two cycles induces on the base

of the versal family swapping of the two lines of intermediate surfaces.
We have obtained

Theorem 4. 37 Let F = Ilo : (C2,0) — (C2,0) be any holomorphic germ, where 11 = TIyI1;
are blowing-ups and o is any germ of isomorphism. Then F' is conjugated to a birational map
obtained by the composition of two blowing-ups

(u,v) = (o +a,v), (uW,0) = (v, u'v),

and an affine map at a suitable place. If moreover, S is of intermediate type and there is no
non-trivial invariant vector field, F' is conjugated to the composition of two blowing-ups of the
previous types.

Corollary 4. 38 Any minimal surface with b1(S) =1 and by < 2 containing a GSS admits a
birational structure.
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5 Birational germs and new normal forms

5.1 Birational germs of marked surfaces with one tree

Let (S, Cp) be a marked surface with GSS and let M be the intersection matrix of the rational
curves. We suppose that Cj is the root of the unique tree (see picture in section 2.1). Then we
have

I - -- Hn—l(uu, v//) _ (ullpv//q + a1, ul/r,Ulls)

where (u”,v") = (u,v) or (u”,v") = (u',v'), ( ;: g ) is the composition of matrices A =

< (1) 1 > or A/ = (1) } ) the last one being equal to A’. We set

6:=ps—qr==l1,

1<d:=(r+s)—(p+qg) <r+s.

Moreover
IIg---1I;_ 1(u 1) (U’U +Zaz ) )

Hence
i+1
F<z>na<z><ol<z>w ““+Zaz(ffl 0a(2)°) m(z)"oz(zf),

where o is a germ of biholomorphism.

If there is no global vector fields the number of parameters given by the blown up points
is 2n and the expected number of parameters of the versal deformation, therefore the question
arises to know if with o = Id we obtain locally versal families. If there are non trivial global
vector fields we need (at least) an extra parameter. We add this parameter by the composition
Iy ---II;_qoll; - - - II,,_1Id where

7(u,v) = (u+ a x5 v), K >0,
where K will be chosen in proposition 40. We obtain a new mapping (denoted in the same

way)
F(z) = Iy---I;_45I0 - - 1I,,_11d(2)

l l i+1 .
_ ( phrl gt +Zz oaz(z1 2) Fap (2] 23R, 2125)
Now we choose ¢ such that the following diagram
anli'wnfl

Hn—l anl

— Y
Wi —2-W
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is commutative, therefore we obtain a one parameter family of birational functions ¢ = 04,
depending on a;4 g such that F' = Ilo is birational and in usual form. We obtain large families
S J.0ay, =By and we shall prove that the stratum Bj s is a ramified covering over the OT
moduli space of marked surfaces with GSS and intersection matrice M.

Lemma 5. 39 Let
F(z)=To(z) = ( ptrl q+Sl + Zal 2122 H +aip K (z{zé)l+K+1,z{z§> ,

then the associated surface S = S(F') admits a non trivial global twisted vector field if and only

if

p+s+rl—1-946 r+q+sl—1+9
= 5 v =
r+s—1 r+s—1
are positive integers. Moreover this twisted vector field is a global vector field if and only if

,  where §:=ps—qr

dagk(S) =
Proof: We have by a straightforwad computation
det DF(2) = (ps — qr)2} ptr(l+1)— 1zg+s<l+1>—1,

By [9], there exists a non trivial global twisted vector field § € H°(S,© ® L*) on S if and only
if there is a global twisted section of the anticanonical bundle w € H°(S, K~ ® L*). Moreover
the twisting factors satisfy the relation A = k(S)x. The section @ is a global vector field if A =1
ie.

1
- 1
=S (1)
Such a section exists if and only if there is a germ of 2-vector field (denoted in the same way)
w v 0 0
w(z) = 21z Az )821 A 8722

where A(0) # 0 such that w(F(z)) = kdet DF(z)w(z), or equivalently,
QOZTZS (2T A(F (2 K(ps — qr)z p+7(l+1) 1+uzq+s(l+1)—1+vA 2).
1%2 1%2 2

Comparing terms of lower degree, we obtain the necessary condition

p+r(l+1)—14+u _g+s(I+1)—14v
= r(ps — qr)z 2

therefore u and v satisfy the linear system

rlu+v) = p+r(l+1)—1+4+u

s(lu+v) = qg+s(l+1)—14vw
The determinant of the system is A = —r — s+ 1 < 0 and the solution is

_ pts+rl—1-4§ U_r—l—q—l—sl—l—i—é

h 0 :=ps—qr==+1.
e , o ,  where ps — qr

Since u and v are the vanishing orders of w along the curves, a necessary condition for the
existence of w is that w and v are positive integers. Cancelling the common factors we obtain

ay = Ko

37



and with relation (1)

If v and v are integers,

with ag # 0. Setting

)
1+ IG) = e
we have
A(F(2)) = 1+ f(2))A(2)
Therefore
A =20
[T+ rF))
j=0
the infinite product converges because F' is contractant. This proves the existence of w. O

Proposition 5. 40 Let

F(z)=To(z) = ( ptrl q+Sl + Zal 2123) H + a+x (z{zS)HKH,z{z;) ,

and let S = S(F) be the associated surface. Then the surface S(F') admits a non trivial global
twisted vector field if and only if there exists an integer k > 0 such that
l=d+k(r+s-1),

If this condition is fulfilled, we choose

K=k
. - - - __ ptstrli—1-¢ *
and S(F) admits a non trivial vector field if and only if for u = ”‘iﬁ € N*,
dagk(S) = 1.

Proof: With notations of lemma 5.39, we have to show that v and v are integers if and only if
l=d+k(r+s—1).
If u and v are integers,

-1
u+v:l+l+w e N,
+s5—1
where p+ ¢ < r + s. Therefore, | = d + k(r + s — 1). Conversely, if | = d + k(r +s—1), it is
easy to check that u and v are integers and the proof is left to the reader. |

Proposition 5. 41 Let

F(z) =Tlo(z) = ( prl gl —&-Zal 2123) + —|—al+K(2122)l+K+1 zfzj) ,

and S = S(F) the associated surface. Then

kE(S)=r+s.
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Proof: The dual graph of the curves is composed of a cycle with (here) only one chain of rational
curves called the tree. The proof is achieved by induction on the number N > 1 of singular
sequences. We denote as in [5]

a(S) = (Sky =+ Skn 1)
where for any k > 1, si is the singular k-sequence s, = (k +2,2,...,2) and r; is the regular
l-sequence 1, = (2,...,2). We have

p g\ _ (0 1 (0 1
r s ) \1 ki 1 ky
and for any 1 <7 < N we set

pi @i\ _ ( pilki,.. ki) qi(ka,.. ki) _ (0 1\ (0 1
ri si )\ rilky,. k) silkn,. k) ) U1 ks 1 k)

therefore
Pi @\ _ ( @-1 Pi-1t+kigia 2)
T 8§ Si—1 Ti—1 + kisiq

the (opposite) intersection matrix of the (unique) tree is the matrix of a chain of length &

2 -1 o ... ... 0
-1 2 -1
5y = 0 -1 2
0
: oo —1
o ... ... 0 -1 2

We have 6, = k+ 1 and by [7], k(S) is equal to d;. Now here

P q . 0 1
r s ) \1 k
therefore the result is checked for NV = 1.

If N = 2, the sequence of opposite self-intersections of the curves in the tree is

2.2 (ky +2)
k}lfl

p q - 0 1 0 1 . 1 ko
r S o 1 Kk 1 ko - ki 1+ kiko

On second hand, the order of the (opposite) intersection matrix of the tree is ky. By [7],

On one hand

k(S) = R =k ki +1=1+s.

1 ky+2
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e If N = 2v, the sequence of opposite self-intersections of the curves in the tree is

2...2 (k 2) 2...92 ... 2.2 (ko +2
(k2 +2) (k2w +2)
k1—1 k3—1 kay—1—1

202 (kg 42) 20022 oeenenn 2.2 (koy+2) 2---22
k1—1 kz—1 kay—1—1 k2u+1

e If N =2v, we have

(2 ) =(0 )=V )

the determinant of the opposite self-intersection matrix of the tree is

D
-1
0(k1y... ko) =
-1
k?u +2
where D = D(ky,...,ka,—1) is the block corresponding to
2.2 (kp4+2) 22 coieinns 92...9
kyi—1 ks—1 koy_1—1

We have by [7], the induction hypothesis and relations (2),

3(ky, ... kay) = kay det D(ky, ..., kay—1) + det D(ki, ... kay_1 +1)

Koy (r(k:l, Y Y U | ST T 1))

+r(k1,... kop—1) + s(k, ..., kav—1)

ko (r(kl, koo kg 1) - s(krs koo, kay_1) — s(ki, ... kQV_2)>
+r(ky, ... kop—1) + s(k, ..., kav—1)

Koy s(k1s s Koy, koy1) +7(k1s oo Eoy1) - 8(k1s .o kau_1)

T(k17~'~7k2y)+$(l€1,...,k2y):’r—|—s.

e If N =2v+ 1, we follow similar arguments:
Let D be the matrix of the chain

2.2 (kg +2) 222 i 2.2 (kgy_o+2)
k‘lfl k371 k:g,/_gfl

then by [7], k(S) = 6(k1, ..., kapt1) and
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1
D
-1 SV kasa
-1
2 -1
—1
§(k1, ey ]CQV+1) ==
2 -1
k2l/ + 2 - * Z;’:l k}2i71
-1 2
.o =1
-1 2 SV ki
1
D
—1 S ki
S kaicatl
= kZV(k2u+1 + 1) -1 2 -1
-1
.o =1
-1 2 > i k2ii—1
1
D
—1 ST ki
ST k2io1l
+ -1 2 -1

.o —1
-1 2 2211 kit

koy(kav1 +1)0(k1, ..., kav—2,kop—1 — 1) +0(k1,. .., kov—2, kav—1 + kav11)
= koy(kovt1 + 1)<7“2u—1 + Sop—1 — 821/—2) + Sop_2 +To_2

+(kov—1 + kavt1)S20—2.

A straightforward computation show that this last expression is equal to 79,41 + S2,41-

Corollary 5. 42 The index of the surface S(F) is
r+s—1
ged{r+s—1,p+q+1—1}

Corollary 5. 43 Suppose that | = d + k(r + s — 1), then S admits a non trivial global vector
field if and only if

Index(S) =

1—0(r+ s)aé’cﬂ)r*p+1 =0.
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Proof: If | =d+ k(r + s — 1), it is easy to check that

pts+rl—1-4§
N r+s—1

= (k+1)r—p+1.

By propositions 5.40 and 5.41, we have the result. (|

Notations 5. 44 We denote by G = G(p, q, 1, s,1) the family of contracting birational mappings

-1
, I+K+1 .
G(z) = (zf+le§+Sl + Zaz(z{zg) oy aipk (2175) R ,z{zi) ,

=0

where ag € C*, a; € C, i = 1,...,1 = 1,1 + K, ai+x = 0 if there is no integer k such
that l = d+ k(r +s—1) and by ® = ®(p,q,r,s,1) the set of the germs of biholomorphisms
¢ : (C%0) — (C2,0) for which there exists G,G' € G such that G' = p™1Gp € G. Let
L := L(p,q,r,s,1) be the group of diagonal linear mappings pa p(z1,22) = (Az1, Bza) where
A, B satisfy the condition

B = AT‘BS, A= Ap+rqu+sl

Lemma 5. 45 1) The group L is a subgroup of Uptsyri—s—1 X Upystri—5—1, where for any
m € N*, U,,, is the group of m-roots of unity.
2) The group L operates on G; more precisely if pa.p € L and

) ! LK +1
G(z) = ( phrlgtsl | E a; 2122 +al+K(zlz2) z{zS) ,

then
_ I+K+1
G'(z) = ‘pA,lBGSDA,B(Z) = ( Pt + Z 2123)" i ap  (2123) ZIZ;) )

where .
Ad, = B a;, for i=0,...,1—-1,1+ K.

In particular L is an abelian group contained in ®.

The proof is easy and left to the reader. O

5.2 Moduli spaces of birational mappings

We want to determine the equivalence classes of the birational mappings G, previously defined
or, that is equivalent, the fibers of the canonical morphism to the OT moduli space. Let

-1
G(z) =Tlo(z) = (zf+7'lzg+8l + Zai (7;{2‘2"')1—~_1 + a1k (z{zg)l+K+17 z’{zj) ,

=0

G'(z)=Id(2) = < prl ‘HS[ + Z 2123) + +aj x (2122)l+K+1 z{zi)

be two such birational germs and suppose that there exists a germ of biholomorphism ¢ such
that G’ o ¢ = p o G. Since the degeneration set {z;2o = 0} is invariant and ¢ cannot swap the
rational curves, ¢ has the form

¢(21,22) = (Az1(1+0(2)), Bza(1+ p(2))).
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‘We have

o(G(2)) = (A(Zjln+rlzt21+sl i Z a; (z{zg)zdrl) (1+6(G(2))), Bz z5(1 + p(G(z))))

1€{0,...,I-1,l+K}

o) = ((an+0e))" (B4 )
s(i+1)

Y (a0 0e) T (Baaae))

i€{0,....I-1,l+K}
ATBE 231+ 0(2)) (1 + p(2))°)

Second members yield the equality
(11) B(1+ u(G(2))) = ATB*(1+0(2))" (1 + pu(2))"

Therefore .

i r/57+1
B=A"B and 1+ pu(z H(1+9 (G4 (2 ) . (3)

First members of the conjugation give

A Y ale) ) 1+ 06()

i€{0,...,I— 1,1+ K}

) = (An 0 +0)) " (B + ()"

Y d(ann+ e(z)))r(i“) (B2t + u(z)))s““)

i€{0,...,l-1,l+K}

Setting 0 = ps — gr = 1, we obtain with (3),

A(Zzl9+rlzg+sl n Z a; (Z{ZS)iJrl) (1+6(G(2)))
i€{0,...,1-1,I+ K}
, —(g+sl)
r/sitl
o — Apt+ripga+tsl, p+Tl q+sl(1+9 5/3 H(1+9 G] )
—s(i+1)
’r/s-7+1
+ Z a Bz+1 7‘ (i+1) s(z+1 H(1+9 GJ )
1€{0,...,l-1,l+K} j=1

The following lemma is evident:

Lemma and Definition 5. 46 The positive integral solutions of the system

p+rl+a = rj
(B) {q+sl+ﬂ = sj

are all of the form

a = kr—p
{ﬁ — ks—gq k>1.

In particular the least solution is (r —p,s—q). When (E) has a solution we shall say that there
1S a resonance.
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Comparing monomial terms 277" 24" in (I) we obtain thanks to lemma 5.46
A = Aptripatst (4)

By lemma 5.45, A, B are roots of unity.

Let Aut(C?,0) be the group of germs of biholomorphisms of (C2?,0) and Aut(C2, H,0) be the
subgroup of Aut(C?,0) which leave each of the components of the hypersurface H = {212, = 0}
invariant, i.e. ¢ € G has the form

p(2) = (Az1(1+0(2)), Bza(1 + p(2))).

Let Aut(C2?, H,0); be the subgroup of Aut(C2%,0) of germs of biholomorphisms ¢ tangent to
the identity, i.e.

p(2) = (21(1 4 0(2)), 22(1 + p(2))).

Lemma 5. 47 Let o : Aut(C?, H,0); — Aut(C2%, H,0) the canonical injection and (3 : Aut(C?, H,0) —
L defined by B(¢) = @ap. Then, Aut(C?, H,0); is a normal subgroup of Aut(C?, H,0) and we
have the exact sequence

{Id} — Aut(C2, H,0); % Aut(C2, H,0) > L — {Id}.

Replacing ¢ by 9"@2,113 we obtain an automorphism tangent to the identity, therefore we
have to determine equivalence classes of the equivalence relation on G

G~G <= 3FJpcAut(C*H,0);, G¢=q¢G.

The equation (/) becomes

<Zf+7'lzg+51 + Z a; (z{zS)zH) (1+60(G(2)))
i€{0,...,I—1,1+K}
) —(q+sl)
e . r/sJJrl
0 = Pty g(2))0) H(1 +0(G](z))>
j=1
—s(i+1)

. e . T/sj+1

+ 3 a) (2] 25) it H(1 (G (z)))

i€{0,...,l—1,l+K} j=1

The question is to determine the quotient G/ ~. We shall see at the end of this section that
the equivalence relation is generically trivial.

+s

l—d o
Lemma 5. 48 Let n = max{d,l+ |:7"]_:|} and 9(2) = Zi+j21 tljziz% [f tlj =0 for
i+ 75 < pu, then

0

9 =
and @ is linear.

Proof: By hypothesis we have

Q(G(z)) = Z aétij (ZIZ§)N+1 mod Dﬁ(TJFS)(N‘H)*H.
i+j=p+1
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We show by induction on k =i+ j > u + 1 that ¢;; = 0.
We consider the terms of degree p+q+ (r+s)l+p+1

p+rl_q+sl 4 W)
21 2 S E tij21%

itj=p+1

and we are looking for other terms of the same degree or bidegrees in (I).
The inequalities

(r+s)l=p+q+(r+s—1l+d<p+q+(+s)l+p+1,
prq+(r+s)l+p+1<pt+qg+(r+s)l+(r+s)(u+1),

prqg+(r+s)l+u+l<r+s+(r+s)(up+1)

show that there is no other term of the same degree when axi; = 0. If ag4; # 0, [ =
d+ K(r+s—1) and it is easy to check that (r +s)(l + K) #p+q+ (r+ s)l + pu + 1, hence
Suppose that for &k > pu + 2,
0(z) = Z tiiziz),
i+j>k

then the similar inequalities show the result. O

r+s—1
Then, the coefficients t;;, for i +j < p, with a; and a}, i = 0,...,1 — 1,1 + K, determine
uniquely 8 hence also .

Lemma 5. 49 Let ;4 = max {d,l—l— [l_d} }

Proof: We show by induction on k£ > 0 that the coefficients ¢;; for i + j < p determine
uniquely the coefficients ¢;; for ¢ + 7 > p + k. It is sufficient to show that if the coefficients
tij, for ¢ + j < p+ k are determined by coefficients ¢;; for ¢ + j < p then the coefficients #;;
for i 4+ j = p+ k + 1 are determined by coefficients ¢;; for i 4+ j < u + k. On that purpose we
consider homogeneous part of degree p+ g+ (r+ s)l + p+ k + 1 in (I) which contain the part

p+rl q+sl‘5 i
S R E lij21 %5
i+j=ptk+1

In order to prove that all other terms with such degree involve only ¢;; with i +j < u+Fk, it is
sufficient to prove that if i +j > p+ k + 1 then

rs+(i+i)r+s)>prqtr+s)l+pt+k+l,
and it is sufficient to prove that
r+s+(pu+k+D)(r+s)>p+qg+r+s)l+p+k+1
o If I <d, up=d, and we have to check that
r+s+(d+k+1)(r+s)>p+g+(r+s)d+d+k+1

which is clear;
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o fd+K(r+s—1)<l<d+ (K+1)(r+s—1), then uy =1+ K. We have to check
r+s+(l+K+k+1D)(r+s)>p+q+(r+s)l+l+K+k+1
However this inequality is equivalent to
d+(K+k+1)(r+s—1)>1

which is satisfied by assumption.

U
Proposition 5. 50 Let G = G(p, q,r,s,1) the family of contracting birational mappings
— i1 LK +1
G(z) = (;;f“%g*sl + 3 ai(272) ™ + ek (23) T z1z2> ,
i=0
where ag € C*, a; € C,i=1,...,1 =114+ K, aj+x = 0 if there is no non trivial twisted vector

fields.
1) The surfaces S(G) have no twisted vector fields, i.e. | —d # 0 mod r + s — 1, if and only if
Aut(C2, H,0); N ® = {Id}.
2)Ifl=d+ K(r+s—1), then Aut(C?, H,0); N ® is a group isomorphic to (C,+) and
a) If there are global vector fields, Aut(C?, H,0); N ® acts trivially on G, in particular a;y
s an effective parameter,

b) If there are no global vector fields, Aut(C%, H,0); N ® acts transitively on C
complex structure on S(G) does not depend on ajy .

i.e. the

H.l+1{7

Proof: Suppose that § # 0 and let v = min{i+j > 1| t;; # 0}. By lemma 48, v < u. The
homogeneous parts of lower degree in (I) which involve ¢;; with v =14 + j are

e Casevy<l—lory=Il+K,

(4) a0z | D tjal | (2128) +ay (57 25) ",
i+j=y
5 o
(B) ZfMZngSlg D tiy2iad,
i+j=y
() —Caosiz | D tyah | (2425)7 +ah(42)"
i+j="

e Casey>1land vy #1+ K, (A) is replaced by

(A% a0z | D tiap | (2123)7,
i+j=y
and (C) by
r .
() —so0z(z | D tyay | (4125)
i+j=

46



e If there is no resonance, the bidegrees of the terms (A) and (C) (resp. (A’) and (C")) are
all distinct of those in (B), therefore we obtain readily

P

g tijz125 = 0,
itj=v

hence a contradiction

e Therefore there is a resonance and there exists a unique coefficient ty,—p ps—q 7# 0 with
k(r+s)—(p+¢) =+. Then

— Casey<l—lory=I1+K,
kr—
02 Z3thr—pks—qy © (2123)7 + ay(2]23)7F

_ _p+rl_g+slg kr—p _ks—q ! (7 8\ Y+1 T .S kr—p/_r s
=2 2 Slhrepks—ql Zp T 04(2125)7T0 — S0 25tk —pks—qlo  (2123)7

— Casey >, v#I+ K

T .8 kr—p/_r_s
021 Z5tkr—pks—qdy  (2123)7

= AT M promgtt T = S0z Bt pke—gat” P (28)
The equality of degrees implies that { = d+ (k—1)(r+s—1), i.e. the surface has twisted vector
fields and vy =1+ (k — 1) = I + K (and the second case never appears). After simplification,
we obtain

5 .
aerK = Qi+ K — tkr—zﬁks—q; (1 - (5(7“ + s)alg P+1)
Let 9 = (21, 22). Since 0(z) = 0 mod MK (1) gives
a,=a;, for i=0,...,01—1,

therefore, applying corollary 43,

e If there are global vector fields, 1 — 8(r + s)at”™ "™ = 0 and aj,x = G4k, hence

Aut(C% H,0); N ® acts trivially;

e If there are no vector fields, 1 — §(r + s)algr_p'|r1 # 0, and G; N ® acts transitively on the
line C

By lemma 49, t = t(g 1)r—p (K+1)s—q € C determines the formal series 6. It remains to prove
that 6 is convergent hence Aut(C? H,0); N ® ~ C.

al+K

o If there are global vector fields, there exists a 1-parameter group of automorphisms, there-
fore there are such € and conversely, any 6 defines an automorphism of S(G) which is in
the identity component of Aut(S(G));

o If there is no global vector fields, a;1k is a superfluous parameter and all surfaces are
isomorphic, therefore there are such isomorphisms.

O

5.3 Representation of any marked surface by a birational germ

We want to compare birational germs and Favre polynomial germs of the form

ok g )
F(21,22) = (A\212§ + P(29) +cz9 ', 25), P(z) = Z b2

i=p+q
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given in [25] (see section 4.1). The condition j < k (or p+ ¢ < r + s in our notations) implies
that the first blowing-up is of the form (u’,v") — (v',u'v") hence we have to consider the germ
I - -1, 11y - - - II;_15 at the point (a;—1,0). After a change of coordinates u = z; + a;—1,
v = zo we obtain

-1 -1
. P . T
_ l i+l 2+K\¥ g l i+1 2A+K
G(z1,292) = ((2122—1— E a;zy "+ Q4 K2y ) 2z, (2122—1— E ;25" + ap K ) z§>
i=0 i=0

We shall suppose that a;y xk = 0 if there is no global vector fields i.e. I —d # 0
mod k — 1 or A # 1.
By proposition 4.36 , A is determined by ag, more precisely

Proposition 5. 51 Let (S,Cy) be a marked surface such that the dual graph of the curves
contains only one tree and Cy is the (unique) root in the cycle of rational curves. Let G and F

be respectively the birational germ and the Favre germ associated to (S,Cy). Then,
1) If p is the index of S and 6 = ps — qr

K = 6”&5[%7(1]71)] .

2) If X is the parameter in Favre normal forms, A is determined up to a root of unity, more
precisely

- 1-p+7%5 _
A =€6ka, T T, fT =1

)

Proof: By lemma 4.35 and proposition 5.41,

K= 6“ag[%_(p_l)].

Applying 1), lemmas 4.31 and 4.23,

L=p+25
0 :

At =€75k(S)a

The aim of the sequel of this section is to prove

Theorem 5. 52 We choose ag € C*, € such that €1 =1, and let c =p+q+1—1. Then
A) If r + s — 1 does not divide | — d or A # 1 there is a bijective polynomial mapping

Faoe ci-1 — ci-1
a=(ar . a1) — (bprgra (@) bprgrii())

such that
-1, -1
G(z1,22) = (zlzé + Za,z%“) 23, (zlzé + Z%‘Z%H) 25
i=0 i=0

s conjugated to the polynomial germ

F(z1,22) = ()\zlzg + Z bizh, z§+s),
i=p+q

where \ depends only on ag by 5.51.
B)Ifl—d=K(r+s—1) and A = 1, there is a bijective polynomial mapping

faoe: Cl-'xC — C-'xcC

a= (ala sy Q-1 al-‘rK) — (bp+q+1(a)a ERE) bp+q+l—1(a)a C(a))
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such that

-1 -1
. P . T
_ l i+1 2A+K ! i+1 2A+K
G(z1,22) = <(2122+ E aizy "+ Q4K 2y ) 23 <2122 + g a;zy" "+ a+ k7 ) zS)

i=0 1=0
18 conjugated to the polynomial germ

ak(S)
— k(S)—1 ’r’—‘,—s
F(z1,29) = | Az2129 + E brzs + cz, ) 24
k=p+q

Proof: Let ¢(z) = (¢1(2), C22(1+ pu(z))) be a germ of biholomorphic map which preserves the
degeneration set {z2 = 0}.
A) We suppose that I —d Z 0 mod r + s — 1 or A # 1. We have, since a;1x =0,

P(G(2)) = <<P1 (¢). ¢ { +Za1 Z“} = (1 +u(G(2))> ,

F(p(2)) = | Ap1(2)C723 (1 + pu(z) Z bC 25 (14 u(2))*, CTH°2575(1 4 p(2))"**
k=p+q

Comparing right members we have

(I1) {2122 + ZCLZZQ} (1 + u(G(z)) — O+ p(2))
Constant parts give the condition
ar — Cr+5—1 (5)

therefore C' is determined up to a root of unity € such that 51
1/(r+s— 1)

= 1. In other terms if we
choose a local determination of the (r + s — 1)-root ay

C = eag/(r—’_s_l), el =1 (6)

Moreover the equation

-1 r
(11) {1 ro (Z aih + l) } (14 1(G(=)) = (1+ (),

has the solution

-1 ' _ [CEsrEa
v = I i o (S micron - siereno ) |

i=1

Left members give the equality

(n ) r
V1 (ao {1 + — (Zal@ + 2125 > } {1 + w0 (Zalzz + 2125 > } 25"'5)

pt+q+i—1

:)\(pl(Z) (CZQ(l—f—,u(z))erqul ' Z bkck 1+/J'< ))
k=p+q
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We want to express the coeflicients b, with the a;’s, however the coefficients A;; of the series
p1(21,22) = > Ay2i7
]

depend also on a;’s. For example, considering homogeneous parts of bidegree (0,p + q), we
have,

(Ro) Aqpal = bp+qcp+q — oprta
hence with (6),
+ iitq_)i P
A10 =eP qao i . (7)

Ifp>0,r+s>p+qg+1and! > 2 homogeneous part of bidegree (0,p + g+ 1) gives

- +q)ram
A p—1 —p Cp+q+1 CP"FQL—

10y pai p+q+1 + r+s ag
therefore by (Ry),

6a1

R b =\
( 1) p+g+1 0(10(7" ¥ S)
Comparing terms of bidegree (1,p+ ¢ + [ — 1) we obtain

r(p+q) CP*4

Ajopal ™! = AACPTIH T 4
r—+s ag

therefore with (7) and (6), and since k = k(S) =r + s,

0 p-1-y

=7 % . (8)

where § = ps — qr.

In order to express the coefficients by 4+, 7 > 1, as polynomials of variables ay,...,a;—1,
it is also necessary to express the coeflicients A;; involved in the relations as polynomials of
the same variables a1, ...,a;—1. Therefore we have to determine the set of points (7,j) € Nx N
which occur as indices of the A;;’s in the relations.

Let Ey be the subset of indices (,7) which occur in homogeneous part of bidegree (0, %) for
p+q<k<p+q+1—1in equation (I). We have

Eo={(i,j) | p+q<ilp+q)+jlr+s)<p+qg+i-1}
Then we define a translation
T(i,j)=(,j+p+q+1-1)

and we want to determine which coefficients A,g are involved on the homogeneous part of
bidegree T'(7,7). On that purpose we define a sequence (E,,)m>—1 of increasing subsets of
N x N, starting with £_; = 0,

B ={i) [+ 0+ i) < Grart-0 (14 v s ) b mzo

and

By = {(i,j)|i(p+Q)+j(T+5) < (p+q+ll)r::i1}'
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Lemma 5. 53 Supposel —d #0 mod r+s—1. Let (i,j) € Ey,, m > 0.
1) If i > 2 then for any («, ), the homogeneous parts of bidegree (i,5 +p—+q+1—1) satisfy

1 1—1 pa+r3
<Aa6 af*tre {1 T (Z a;z5 + leél> } zé‘(”+q)+ﬁ“+s)> =0.
0 \i=1 ij+prati—1

2) If i = 1, and homogeneous part of bidegree (i,j +p+ q+1— 1) satisfies

pa+rp
<Aa pa+T6 {1 + — (Z aizh + 2125 ) } z5 (p+q)+ﬁ(r+s)> £0
1,j+p+q+i—1

then (a, B) € Ej.

Moreover
e Ifm =0, then (o, ) € Ey,
o Ifa=1, then B <j/(r+s), in particular if j # 0, then 8 # j,
o Ifa=0, then § < j or {(i,j) = (1,1) and (o, §) = (0,1)}.

3) If i =0 and

B
<A0/3 ag {1 + — (Z aizh + 2125 ) } z§(r+s)> #0,
0,j+p+q+i-1

the following two conditions cannot be fulfilled at the same time
e i=a=0,and j=p,

if the coefficient Ag ; appears two times when considering homogeneous part of bidegree
(0,7 +p+q+1—1), one occurrence is multiplied by a non constant polynomial in ay,. .., a;.
4) If (i,7) € E,, and i > 2, then A;; = 0.
5)If (0,7) € Emy \ Epp—1, m > 0 and (o, B) satisfies

alpt+q)+B(r+s)=j+p+q+l—1,

then
hd (Oé,ﬁ) € Em+1 \Em

e a=0o0ra=1 and (a,p) is unique.

In other words, in homogeneous part of bidegree (0,5 4+ p+ q+1— 1), there are, modulo M =

(@1,...,a1-1), at most two coefficients which occur: Ay ; and perhaps another Aqp with o =0
ora=1.
Proof: If

pa+rf
<Aa5 abotr? {1 + <Z aizh + 2125 ) } z;*(”*q”ﬁ(”s)> #0
0 \i=1 i +p+a+i—1

then, pa+ rB > i, and the least degree in z5 is

(I=1)i+alp+q)+ B(r+s).
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Since ()i j+p+q+i-1 7 0,
(%) (I-Di+alp+q)+Br+s)<j+p+tqg+i—1

however by assumption (i,7) € E,, C Ex,

. ptg+l—1 . p+gq
< —1
r+s—1 r+s

therefore

q

(xx) (l—l)i—H’fis+a(p+q)+ﬂ(r+s)<(p+q+l—1)(1+1)

r+s—1

Notice that (4, j) = (o, 8) if and only if (4,7) = (1,0).
1) If i > 2, we have, by (),

Ptyq

2(-1)+2 20 a4 80 +9) < bt -1 (14— )

r+s—1

Since p+qg <r1+s,

1 2 1
(l_1)<1_7’+5—1>+(p+Q) <r+s_r+s—1+a+ﬁ_1)<0

which is impossible.
2) Suppose that (i,j) € E,,, and i = 1 then

. p+q+l—1< 1 ) p+q
P .y -
r+s r+s—1 r+s
and by (x)
-1+ 220 ot q)+Br+5) < pra+i-1) (14— + :
r+s r+s (r+s)(r+s—1)

which is equivalent to

1 1 1
(=1 (1_ (r+s)(r+sl))+(p+q) <r+5_ (T+S)(T+S1))+a(p+q)+ﬂ(r+s)

<(pt+qg+l-1) (1+1)

r+s

hence

a4+ 5049 < Grari-1) (14 1)

and (o, B) € Ej.

If m = 0, the result derives from the definition of Ey and (x).

Ifin (x), a =1, B(r+s) <j.

Ifin (%), a =0, B(r+s) <j+ (p+q). If moreover § > j, j(r+s—1) < p+ ¢, hence
e j=0and B(r + s) < p+ ¢ which is impossible because o = 0,

e j=1,and g =1.
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3) Let (0,7) € E,,, with m > 0 is minimal. We have

1 1
' < -1+ —4 4+ —).
jr+s)<(p+q+ )< +r+5+ Jr(r—l—s)’”)

Ifjir+s)=j+p+qg+1—1, then

. 1 1
J<(p+qg+1-1) r+5+"'+m

hence

1 1
j < - (1+ —t+— .
jr+s)<(p+q+ )( ts T +(T+S)m_1)

and (0, j) € E,,—1 which is contradictory.
4) Let (i,5) € E,, with ¢ > 2 and consider part of bidegree (i,5 +p+qg+1—1). By 1), left
member of (I) gives no contribution, we show now that

<bkaz§(1 —&—u(z))k) 0.

b jprarl—1

In fact, the monomials which contain zi contain zp at the power at least k + i(l — 1) with
p+qg<k<p+q+1—1and it is sufficient to show that

j+pt+g+l—-1<k+i(l-1).

Moreover, k > p+q and i > 2, hence it is sufficient to prove that j+p+g+I—1 < p+q+2(I—1),
ie.

(X j<l—1.

By assumption, (4,j) € E,,, therefore

. 1 1 p+q
< I—1) (14 -
J*r+5(p+q+ )( + +(r—|—s)m) Tt

and condition (W) is satisfied if

1 1 p+q
— -1+ +— [—1)+2——
T+S(p+q+ )( + +(T+S)m><( )+ s

which is clearly satisfied since r 4+ s > 2. Finally we obtain

0= )\Aijcp+q+l—1zi Z%+p+q+l—1

and Aij =0.
5) If (0,) € Ep, i.e. j(r+s) <p+q+1—1then

alp+q)+pB(r+s)=j+p+qg+l-1)>p+qg+l-1

hence (0[7B) ¢ EO' If (07.]) € Em \ Em—17

—-1)(1
(p+q+1 )( +r+s (r+s

1 1
< 01+ — iy
<(ptat )< +r+s+ +(T+S)m>
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and by (%), the new («, 8) satisfies
alptq)+B(r+s)=j+pt+q+ti-1

We want to check that

alp+q)+B8(r+s)>p+qg+l-1) <1+’I“—:|l—8+“.+(7"—|‘13)m>

This is equivalent to

> (1 (p+q+i1-1)
J r+s (r+4s)m-1 pd

or 1
i 14+ —— —1
j(r+s)>(+ +(r+s)m1)(p+q+l ),

ie. (0,7) & E,,—1 which is true by assumption.
Iftk=(p+q) + B +s)=p0(r+s) then p+ ¢ is a multiple of r + s which is impossible,

therefore we have the unicity of (o, 3). O
Lemma 5. 54 The linear system with coefficients in Claq,...,a;—1] and unknowns
bp+q+17 SERE) bp+q+lfl and Aij7 (17]) € Ex

is a Cramer system of order | — 1+ Card (Ew,). More precisely, modulo 9, its determinant is
A= Cp+q+1 . Cp+q+lfl()\cp+q+l71)0ard FEw 7& 0 mod M

and by = B2 k= p4g+1,...p+tq+l—1, Ay = B4 (i,j) € En, with By, By €
(C[ah...,al,l}.

Proof: We order the unknowns in the following way: First unknowns bpyq41,...,bpyq+1—1, after
coefficients Ag; # 0, with (0,7) € Ep then (0,7) € E1 \ Ey, ...(0,) € Eny1 \ B, exhausting
E. Finally coefficients A;;, with j in the decreasing order. We have the same number of
equations and of unknowns, therefore we have a linear system of order | — 1 + Card (E,). Let
M = (a1,...,a;—1). In order to prove that we have a Cramer system it is sufficient to prove
that modulo 9 the determinant A is nonzero. Therefore we consider the equation (I) modulo
I, i.e.

(1an)

2t p 21 r
4 2 p+q 2 +
w1 |agq1+ T zg 0 apgq 14+ o 25t

p+q+i—1
+ Z bOP 25 (1 4 pu(2))k mod M
k

=p+q

= xe1(2) (Ca(1 + u(»z))p”“_l

where, in the infinite product 1 + u(z),

G(z1,73) = ((zlzé + apz2)Pz3, (2125 + aOZQ)"zg)

-1\ ? -1\ "
Z1% zZ1z 1o
(aé’ (1 + 2) 2B an (1 + 2> z;+‘s> mod M
ag ao
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which provides

-1 7 pr(i-1) (1 n zlzé’l)p”(lfl) e (=D (ree)?
1—|—/J,(Z) _ {1+2122 } 1+ a,
agp ao
- 1-1)-1

LT gzt T e
r+s ap (r+s)?2 7

r r(l—1))ad =72 _

Muthay (r Jg)s)g 2T L mod
By construction, the diagonal of the matrix is
crratl o optati=l zorteti=lo o \optaticl

and the square submatrix, of order [ — 1 corresponding to the unknowns
bprgri, i=1,...,1—1,

is diagonal because p+ g+ (r +s)(l — 1) > p+ g+ 1 — 1 and no term comes from (1 + pu(z)).
We shall show that after some linear combinations of the lines, we obtain an upper triangular
matrix, which yieds A # 0.

Let (0,5) € Em \ Em—1 (E-1 = 0). Since Ag; # 0, the homogeneous part of bidegree
(0,j+p+q+1—1)is by lemma 53, 5)

Aaﬁa8a+rﬂz;‘(p+q)+ﬁ(r+s) _ AAOng(CZQ)p+q+l—1’ mod oM
with (a, 8) € Emt1 \ Em, if such (o, 38) exists, or
0 = Mo;25(Cz)PHH=1 1 mod M

otherwise. A term b;25(1 + u(z))* has no part of homogeneous bidegree (0,m) because j + p +
g+1—-1<2(p+q)+ (r+s)(l —1). Therefore, with the chosen order on the unknowns, all
coefficients of the linear equation are over the diagonal of the matrix.

Remain homogeneous parts of bidegree (1,5 + p+ ¢+ — 1) involving A, ; for j > 1. We have

(1+p(2)) LT mE irag T -y
z = z
a r+s ap (r+s)2 7

+ir(p +r(l— 1))a§+r(l*1)72
(r+s)2

le§+q+(r+s+1)(l*1) + .- mod I

It is easy to check that for ¢ > p + g,
itp+q+t(r+s+)I-1)>j+(p+g+i-1),

therefore the only terms which may be involved in homogeneous part of bidegree (1,7 +p+q+
l—1) are

. -1
C o ir oz
biClZ%r%—s 122 , where p+¢<i<p4+qg+i-1
0

therefore
t=j+p+gq.
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We have still to check that j <1 —1. If (1, j) € Ep, then clearly j <1 — 1; if it is not the case,
(1,7) € E1 \ Ep by lemma 53, 2). We have

: p+aq 1
-1 < — -1
* -1 <irbe) < P (14 )

and [ > 2. With (%) and p+¢q < r+ s —1 we check that the inequality j <1 —1 is still fulfilled.

Now, there are two possibilities

1. There is no («, 8) such that a(p+ q) + 8(r + s) = j + p + q. Therefore

-1

0= AAy;21 2 (Cap)PTIH T by gy, CPFITIEHOH b+ (i_+ Az g
r+s ao

The j-th equation (which gives the j-th line L; of the matrix) is
0= bp+q+j0p+q+j mod 9N

therefore substracting %Lj we remove the coefficient by q4,;CPTIT7 % which

was under the diagonal.

2. There exists («, ) such that a(p + q) + B(r + 8) = p+ ¢+ j. By lemma 53, 4), there is
at most two such coefficients (0, 8) and (1, 5’). By the choice of the ordering, and lemma
53, 2), Al,,@’ > Alj and the coefficient of ALB/

_ag-f-r,ﬁ —l(p + 7"5/)

is over the diagonal.
Then mod 9, the homogeneous part of bidegree (1,j+p+q+1—1) is

B 2z B(r+s) p+rp’ 17 (p+a)+5(r+s)
Aopag 1f Ty 2 +Aigrag " (p+rf) e 2

~ -1
: - : (p+q+i)r mz
= My 2125(Cog)PTTH T by g, CPHIHT L0 ( r+s ) ai

hence

(p+g+jrl

Ao a7 rB + Ayp a8 T (p 4 rB) = NAy PRl L L oPtat i
r4+s ag

where perhaps one of the coefficients Agg = 0 or Ajgr = 0. The j-th equation derived
from the homogeneous part of bidegree (0,p + g + j) is

Aggag’ + AlﬁragJ”ﬂ/ = byt ;OPTIT7 mod M
and if Agg = 0, it remains to substract %
App # 0, we have two coefficients under the diagonal: Apg and bp444;. However

L; to obtain a triangular matrix. If

g At
r+s
therefore substrating %LJ— = %LJ— we remove both coefficients, obtaining the de-

sired upper triangular matrix.
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We conclude that A = CPFatl...ortati=1(\Crtati-1)Card B £ () The second member of
the Cramer system is nonzero and involves A9 and b,4, = 1, therefore solutions of the system
are rational fractions in variables ay,...,a;_1. O

Consider the restriction of the equivalence relation defined by L. Since ag is fixed we have
the extra condition A = B, hence by lemma 45,

a=(ay,...,a1_1)~a =(dy,...,a}_,) < a, = Bla;, for i=1,...,1-1,1+K,

where
Bk—l — B'r‘—‘,—s—l =1

and
B° — prtati-1 _ ppta+(r+s)i—1 _ 1

Let I, : C'=! — C!'~'/L be the canonical mapping. Similarly, consider the restriction to C'~*
of the equivalence relation of Favre germs given by lemma 23. If we fix A then ePt9H -1 = ¢7 =1
and

/ / / / 3 -
b= (bp+q+1; .. .,bp+q+lfl) ~b = (bp+q+1’ .. '7bp+q+lfl) <~ bp+q+’i = 61bp+q+ia 1 S ] S [—1.

LetII: C'=' — C'"'/Z,,,_1 the corresponding canonical mapping. We see that the equivalence
relations a ~ a’ and b ~ b’ on C'~! are equal and II;, = II.

Lemma 5. 55 We choose ag € C* and € such that €t 1 =1, Leto =p+q+1—1 and
suppose that r + s — 1 does not divide | — d. Then there is a commutative diagram

(Cl_l f‘loxf, (Cl_l

Iz, II

cl-1/L _Id, CYZpss

where
-1 -1
fag,e : C —C

18 an tsomorphic polynomial mapping.
Proof: Both canonical mappings
M, :C*xCt 5 C*xC7Y/L and T:C*xC™' - C*xCYZ 1oy

are ramified covering with r + s — 1 sheets. Let b = fq, c(a) and ¥’ = f,, (a’). By definition of
fao,e» Ga ~ Fy and G ~ Fy, therefore

a~ad = Gu~Gy = Fy~Fy <= b~V

and the diagram is commutative. The rational mapping fo, . is proper because if K C C'=! is
compact then

faakelB) € 1 (W (11(8)) ) = 11 (11(K)

and f;)}e(K) is compact as Hzl (H(K)) The rational mapping f,, . is proper hence has no po-
lar set hence is polynomial. The image of f,, . contains an open set by corollary 3.16 therefore
fag,e is surjective. The ramified coverings have the same number of sheets hence f,, ¢ is also

injective. ]
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Lemma 5. 56 We choose ag € C* and € such that €51 = 1. Letc =p+q+1—1 and
suppose that r+s—1 does not divide l—d. Then there is a proper surjective polynomial mapping

fao.e: Cci-1 — ci-1
a=(araic) > (bpegra(a). g (@)

such that

-1
L \P
G(z1,22) = ((leé+§ aizé'H) ng <2122+§ :al z+1) Z>
i=0

=0

s conjugated to the polynomial germ

F(z1,22) = | Az125 + Z bizh, 255 |,
i=p+q

where \ depends only on ag by 5.51.

Proof: Denote by fg,, be the rational mapping of lemma 54.
1) For 1 < j <1 — 1, the homogeneous part of bidegree (0,7 + p + q) is

j—1
Optatj ptati Lptat+i’ ptati p R e
bptq+iC <2 + E bp+q+i'C <2 Pjjilar,... a5-5)%
=1
-1 ap+pBr
1
a(p+q)+B8(r+s 2: i
_ E Aaﬁagp+ﬁT22(p q)+B( )<{1+a azzé} >
0 “ .
(200 i=1 (01P+Q+J*0¢(P+Q)*ﬁ(r+5))
+B8(r+s)
<p+q+j

-1 P
1 Z )
B AlOZngq <a§ {1 i ao aiz;} > - Cp+ng+q<(1 + H(Z))>(o 7)
i=1 (0,9) ’

After cancellation of 257%™/ and recalling that Ajgaf = CP*9, we obtain the j-th equation
j—1
bp it CPTI 4+ bpigy o CPT Pryian, . aj )
=1
1 -1 ap+pr
< { 1+ — Z aizé } >
ag “
_ Z A qoPTPT i=1 (0,p+q+j*a(p+q)*ﬂ(r+8))
aBto ptat+i—a(p+a)—B(r+s)
(a.8)#(1,0) 25
a(p+q)
+8(r+s)
<p+q+j

(fi+ 1y lazzz}”>(07j) (@

J
)

— Cp-‘rq

We show by decreasing induction that for j =1,...,1—1

)

bptgti = bprqri(ar,...,a;) € Clag, ..., a;].

58



For j =1 — 1 there is nothing to prove. Let 7 > 1 and suppose that

bprgri-1 € Clar,...,a1—1], ..., bprqrjt1 € Clar, ..., a;41).
Then
e Forj’=1,...,j—1, Pjjy € Clay,...,a;_1),
e Since p+q+j—alp+q) —B(r+s) <y,

1 -1 i ap+pr
14 a0 Ei:l ;29
(0.p+a+i—alp+a)—B(r+s))

Zp+q+j*a(p+q)fﬁ(r+5)
2

S C[al,...7aj,1 R

e (Clearly

)P . P
1+ L l:laiz’} > <{1+i 7 aizl} >
<{ a0 ZZ‘? RIRACY) o0 Z".l SARACY)

= € Clay,...,a;
CH
e From the definition of u,
) r(p:—q)
1 ) Trrs
<(1+u(2))p+q> _ <{1+aozg—1 aizg} >
- ©.5) _ - S C[al,...,aj]
% %
Therefore modulo 9M,;_; = (al, e ,aj_l),
. da;
b )= —
P+aq+j (7" + S)ao
and there exists a polynomial R;(ai,...,aj—1) € Clai,...,aj_1] without constant term such
that
5aj
(T) bp+q+j = bp+q+j(a/17 . 7a,j) = m + Rj(a]_, . ,a/jfl).
2) We show now that the polynomial mapping
f: Cci-1 — Cci-t
(a1, ai-1) (bp+q+1(al)7 o bprgrian, o ag), o bprgri—(an, 7Gl—1)>
is proper, hence surjective. Let K C C'~! be a compact subset and (a1, ...,a;_1) € f~1(K).

We have to show that for any j = 1,...,l—1, a; is uniformly bounded. We show this property
by an increasing induction on j > 1. For j =1,

1) aq
R1 b C=—""—
( ) p+q+1 (7' I S)Clo
and a; is bounded since bpiq41 is. Suppose that j > 2 and that aq,...,a;_1 are uniformly
bounded. Then a; is uniformly bounded since it is the cas of R;(a1,...,aj-1) and bpiq ;.
O

B) We suppose that ] —d = K(r + s — 1) and A = 1 i.e. there are non trivial
global vector fields. We have

I+ K=d+ Kk(S), o=p+q+l-1=(k(S)-1D(K+1), ———=k(S)(K+1).
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We denote by

-1
(5) = (St ot

=1

the equation (I) is now

o1 <a’8 {1 + % (Z)}ng’*q,ag {1 4 aio (Z)}ngﬂ)

=21(2)(Ca(l+p(2)) + S b (€04 u2)) +e(Caalt ()

i=p+q

(1)

If m > %5, then (0,m) ¢ Ew, in fact

k +
d =(p+q+l—1)7,r °

> - -
m(r + s) P

k-1

therefore the coefficients a;1x and ¢ doesn’t occur in the previous calculations and we obtain
by similar arguments a polynomial mapping f,, .

Lemma 5. 57 Supposel=d+ K(r+s—1). Let M = (ay,...,a;—1) and (i,7) such that
pitrj 1 -1 m I+K 1=\ P i(pta)+i(r+s)
Aijag {1 + % (Zm:l amZy + Qi+KZy — + 2129 ) } Z) # 0,

(0,724)
mod M

then, (i,75) = (1,0) or (i,j) = (0, £%3). More precisely homogeneous part of bidegree (0, ,f—_kl) is

O = Avopaltary i + Ap, = C7(1—=X) mod M.
In particular if there are global vector fields, i.e. A =1,
ok _ p—1
cC*1 = Ajgpag ai+x mod M.

Proof: 1) If (i,5) € Foo, then i(p+ q) + j(r +s) < ];‘—_kl and 7 < 1.

e Case ¢ = 1: Since

k k
l+K+(p+q)+j(r+s):%+jk2ka_l

we have equality if j = 0 hence (4,7) = (1,0).
e Case?1=0: thenlgjgﬁandmodim,

, SRR
<A0ja8]{1—|—al+[;z2} zé(r+s)> #0,mod M
0
(0525

In the left member the possible powers of z9 are of the form «(l + K) + jk with a > 0

and j > 1 such that
ok

k-1
Since a(l+ K) + jk = (d+ Kk)a+ jk, we derive that o > 1 is impossible, therefore a = 0
and j = 5.

a(l+ K)+jk=
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2) From 1) we deduce that there exists a polynomial P in variables ai,...,a;—1 such that the
ok _
coefficients of z4 " in (I) give the equality

_ == _ok_
Ay pah 1al+K —|—A07ﬁa§’l =N 2 C% +cC*T + P(ay,...,a;-1).

=1
By equation (5),

al T —AC7 = C7(\ — 1)
which gives the result. O

Lemma 5. 58 Ifl—d=K(r+s—1) and A =1, there is a bijective polynomial mapping

Jag,e - C-t'xC — cl-t'xC
a=(a1,...,a1-1,a1+K) (bp+q+1(a)7 s bp+q+l71(a)7c(a))
such that
-1 , -1 .
G(z1,22) = (leé + Zaing + al+KZ§l+K) 23, (leé + Z aizytt + al+KZ§l+K> 2z
i=0 i=0

18 conjugated to the polynomial germ

g ok(S)
_ k kE(S)—1 _r+s
F(z1,29) = | Az129 + E brzg + czy ) 24
k=p+q

Proof: We have a bijective polynomial map
fag,e :CTH = C7Y as b= fo c(a).

From lemma 5.57, when a = (a1,...,a;—1) is fixed and a;1x € C, the mapping ¢ : C — C,

_ ok — . . .. .
ajrx — ¢ = c(a+rx) = C7F1 Ay pag) 1al+K is linear hence bijective.
O

Corollary 5. 59 Any surface with GSS with one tree admits a special birational structure.

Corollary 5. 60 The intersection A := Aut(C?, H,0) N ® is the trivial group or a group iso-
morphic to (C,+). Moreover

o if k—1 does not divide s =p+ q+1— 1, the canonical mapping
9:G/A=G(p,q,7,5,1)/A = Ups.m,/Li—1
to the Oeljeklaus-Toma coarse moduli space of marked surfaces (S, Cy) with one tree
Uk.oomy /Zr—1 = C* x C'7V )2y
1s isomorphic and there is a polynomial lifting
(Ab):C* xCt —» Ccr x CI!

which is a covering such that

(/\7b C* x (lel

C* x €1
G/A 9+ Uksm /T
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18 commutative,

o if k—1 dividess =p+ q+1—1, we have similar results for

Up0e=07, 1 and UXTL /Z_..

k,s,m1 8, M1

Corollary 5. 61 LetS;, — B be a large family with o = Id. Let Ty, the hypersurface where
cocycles [0°] and [u] are not independent. Then for each stratum By yr, the trace Ty, N By
on By is equal to the inverse image of the ramification set by the lift of the canonical mapping
i.€.

e Ifk—1 does not divide s,
Tyo N Byar = (A 0) " (Th.s.m,);

e Ifk—1 divides s
T5oN By = (A, b) (17 Le=0),

k,ﬁ,ml

In particular in By there is no curve over which the surfaces are isomorphic.

6 Appendix

6.1 On logarithmic deformations of surfaces with GSS, by Laurent
Bruasse

The results contained in this section is a not yet published part of the thesis [3]. Notations are
those of [4] and [9].

Let F be a reduced foliation on a compact complex surface S. We denote by T (resp. Nx)
the tangent (resp. normal) line bundle to F.
Let p be a singular point of the foliation; in a neighbourhood of p endowed with a coordinate
system (z,w) in which p = (0,0), F is defined by a holomorphic vector field

0 0
0(z,w) = A(zm;)a + B(z,w)a—w.

Let J(z,w) be the jacobian matrix of the mapping (A, B). Baum-Bott [1] and Brunella [4] have
introduced the following two indices:

det J(z,w)

A(z,w)B(z,w) dz dw

Det(p, F) = Res(q,0)
2
(tr J(z,w))
A(z,w)B(z, w)
where Res g is the residue at (0,0) (see [15] p649). We denote by S(F) the singular set of
F, it is a finite set of points, and let

Tr(p,F) = Res(,0) dz N\ dw

DetFi= Y Det(p,F), Tr(F):= Y. Tr(p,F).
peS(F) pES(F)

Proposition 6. 62 (Baum-Bott formulas, [1],[4]) We have
Det F = CQ(S) - C1(T]:).01(S) + Cl(T]:)Z,

Tr(F) = c1(8)? — 2¢1(TF).c1(S) + 1 (TF)>.
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By [9], if S is a minimal compact complex surface with GSS, then
Det F=n, Tr(F)=2n—o0,(9).

Proposition 6. 63 Let S be a minimal surface containing a GSS with n = ba(S) > 1 and
tr(S) =0. If F is a reduced foliation on S, then

3n — o, (5) if h9(S,0)

0
1 _
WS, TF) _{ 3n—on(S)+1 if h(S,0)

1

If there is mo mon-trivial global vector fields this integer is precisely the number of generic
blowing-ups.

Proof: By Riemann-Roch formula
BOTF) = BN (TF) + 3 (T5) = X(8)+ 3 (e1(T5)? = er(Tr)er ()

= 1(TF)? = 0,(S) —3n

since
e by the first Baum-Bott formula ¢1(T%).c1(S) = ¢1(Tx)? and
e by the second and the previous observation ¢;(Tx)? = —T7(F) + ¢1(S)? = ,(5) — 3n.

Suppose first that S is of intermediate type. Two cases occur

0 if K(5,0)=0
hO(T}-):{ 1 ;f no‘E :

Moreover, by Serre duality h?(Tx) = h°(K ® Tx) and
a1l (K).(c1(K) = e1(TF)) = c1(S)* + c1(9).c1(Tr) = —n+ (04,(S) = 3n) = —4n + 0,,(5) <0

Let e;, i = 0,...,n — 1 be the Donaldson classes in H?(S,Z) which trivialize the negative
intersection form. In H2(S,Z), c1(K) = Y1 ei and ¢ (K) — e1(TF) = .7~ aie;. Since
c1(K).(c1(K) —c1(TF)) < 0 we have Y, a; > 0 therefore k(K @ T%) = 0 by [24] Lemma (2.3).
If S is a Inoue-Hirzebruch surface, there are two foliations, each defined by a twisted vector
field § € H°(S,© ® L), with A an irrational quadratic number (see [9]), hence T = LY/*. We
have —K = D or —K®2? = 2D and there is no topologically trivial divisor, therefore

RO(LYA) =0, and h*(LY*) = hY(K ® L) = 0.
We conclude by Riemann-Roch theorem that
RY(TF) = hH(LYA) =0 = 3n — 0,(9)
which is the annouced result. O

We have a canonical injection 0 N 'r — O(—Log D). The aim of the following proposition
is to compare logarithmic deformations and deformations which respect the foliation:

Proposition 6. 64 There exists an exact sequence of sheaves of Og-Modules

(W) 0 — Tr 5 ©(—Log D) — Nz @ O(—D) — 0.
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Proof: Let U = (U;) be a finite covering by open sets endowed with holomorphic 1-forms w;
defining the foliation F. On each open set U; we consider the morphism

VE 9(_L09D)|Ui — N}'(X)OS(_D)\M
0 — wi(Q)

Since 6 is tangent to D, w;(#) vanishes on D, therefore the morphism is well defined on U;.
Moreover, by definition, the normal bundle Nr is defined by the cocycle (g;;)i; = (wi/wj)ij €
HY(U,O*), therefore j is well defined on S and its kernel is clearly Im4. It remains to check
that j is surjective: outside D it is obvious since the foliation has singular points only at the
intersection of two curves and we have the exact sequence

0—Tr —Z> @(—LOgD)‘S\D = @|S\D — Nr — 0.
Let z € D, f; € Nr,y @ O(—D),, and U an open neighbourhood of = on which f is defined.

e If z is not at the intersection of two curves, let (z,w) be a coordinate system in which
D = {# = 0} and F defined by w = a(z,w)dz + zb(z,w)dw. Since f vanishes on D,
f=zg. Let 0 = za(z, w)% + B(z, w)% be a logarithmic vector field. We have to find «
and [ such that

F(zw) = 2g(z,w) = w(6) = z(aa + bg)

i.e. g € (a,b). The are solutions because x is not a singular point of the foliation hence a
is invertible at z.

e If z is at the intersection of two curves,

0
w=wadz+ zbdw, f=zwg and 6= za(z,w)g + wﬁ(z,w)a—w.
We have to solve g = aax + 3. By [19] p171 (see also [9] p1528), the order of € is one,
hence a or b is invertible and g € (a, b).

]

Let S be a minimal compact complex surface containing a GSS with n = b3(S) > 1 and
tr(S) = 0. If S is not a Inoue-Hirzebruch surface then S admits a unique holomorphic foliation
F [9] p1540 given by a d-closed section of H°(S, Q' (Log D) ® L*). If S is a Inoue-Hirzebruch
surface, it admits exactly two foliations defined by twisted vector fields.

The exact sequence (#) yields

0— HY(S,Tr) — H*(S,0(Log D)) — H*(S,Nr ® O(-D)) — H*(S,T¥)

In fact, if S is not a Inoue-Hirzebruch surface, F is unique, thence Q' contains a unique non-
trivial coherent subsheaf which is O(—~D) ® L'/*. As N% is another, N = O(D) ® L* and
HY(S,Nr ® O(=D)) = H°(S,L*) = 0 because k # 1. We have also h%(S, Nr @ O(—D)) =
h2(S,L¥) = h°(S, K ® L'/*) = 0. By Riemann-Roch theorem, h!'(S, N ® O(—D)) = 0 and we
obtain the isomorphism

0— HY(S,Tr) = H'(S,0(Log D)) — 0

If S is a Inoue-Hirzebruch surface Nx = O(D) ® L* where ) is an irrationnal number and we
have the same conclusion.

With (63) we have proved:

Theorem 6. 65 Let S be a minimal compact complex surface containing a GSS with n =
b2(S) > 1 and tr(S) = 0. Then:

3n — o, (5) if h(S9,0)=0
S5,0)=1

hl(S,G(LogD))Zhl(S»Tf):{ 3n—0,(S)+1 if hO(S,0)

)

In particular any logarithmic deformation keeps the foliation.
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Remark 6. 66 If ir(S) # 0, the theorem remains true by [8].

6.2 The torsion of some first derived direct image sheaves, by Andrei
Teleman[29]

Let B, P be complex manifolds 7 : P — B a proper holomorphic submersion and let £ be a
holomorphic bundle on P. We are interested in the torsion of the sheaf R, (&).

Let U C B be an open set and ¢ € O(U) a non-trivial holomorphic function, and D :=
Z(¢) the associated effective divisor. We are interested in the sheaf Ker (m,) where m,, :
R'm.(&)|y = R'm.(€)]y is the morphism defined by multiplication with ¢.

By definition of the Op-module structure on R'm,(€), the morphism m,, is just R'm.(me),
where mg is the morphism of sheaves E‘ﬂfl(U) — S‘ﬂfl(U) defined by multiplication with the
function

®:=7"(p) =pomcO(r 1 U)) .

Tensorizing by the locally free sheaf £ the tautological exact sequence associated with the
divisor A = Z(®), we obtain the short exact sequence

0— &1y == Elpryy — Ea — 0,

which yields a long exact sequence

T (ma)

0 — M€y — > Tl€|p1(r)) — m(€a) —

1 Rlﬂ*(mqs) 1
— R W*(E‘ﬂ_—l(U))% R 77*(5‘71_71([]))—)... (9)

Denote by j and J the inclusions of D and A in B and P respectively. The sheaf £ can
be written as J.(€|x). One has mo J = jo (m|a), hence

T(€a) = m(Ju(€]a)) = (0 J)u(E]a) = (Foma)(E]a) = Ju [(T1a)(E]A)] -
We consider the Brill-Noether locus
BN(&):={x € B|h°(&,)#0} C B .

Lemma 6. 67 Suppose that the divisor Z(yp) is reduced, and that BN ()N Z(p) has codimen-
ston > 2 at every point. Then

Ker (m,, : Rlﬂ*(g)‘u — RIW*(E)‘U) =0.

Proof: Tt suffices to prove that (m|)«(€]a) =0. Let V. C D := Z(¢) be an open set and W its
pre-image in A. One has
(m1a)(E1a)(V) = HO(W,E|A) -

Since W is reduced, the vanishing of a section s € H°(W,E|,) can be tested pointwise. But
the restriction of any such section to the dense set

WA (m12) " (BN(€))

vanish obviously (because it vanishes fibrewise). This shows H°(W,&|A) = 0. O

Proposition 6. 68 Suppose that the Brill-Noether locus
BN(E):={x € B| h°(&,) #0} C B

has codimension > 2 at every point. Then R'm, (&) is torsion free.
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Proof: It suffices to prove that for every # € B and for any irreducible germ ¢, € O, the
multiplication morphism m.,, : R'7.(£), — R'7.(£), by ¢, is injective. Choose U C B a
sufficiently small open neighborhood of x such that ¢ is defined on U and the effective divisor
Z(p) C U is reduced!.
Then
Ker (my,,) = {Ker (my, : R'm. () |y — Rlﬂ*(é’)‘U)}m =0

by Lemma 67 and the exact sequence (9).
O

Proposition 6. 69 Suppose that B > x +— h°(E,) € N is constant. Then R'm.(£) is torsion
free.

Proof: Since the map B 3 x + h°(&,) € N is constant, 7, (€) is locally free and commutes with
base change by Grauert’s theorems. Here we used the properness and the flatness of p (which
implies the flatness of £ over B). This implies that the natural morphism

T (€ |p=1(1r)) — mu(€n)

can be identified with the morphism 7, (|, -1 ) — m(€|z-1()) ® Op, which is obviously
surjective. Therefore Ker (my, : R'm.(€)|y — R'm.(E)|y) = {0} by the exact sequence (9). O

Theorem 6. 70 Suppose that

1. The fibers of m are connected surfaces.
2. The Brill-Noether locus

BN(&):={xz € B| h°(&,) #0} C B

has codimension > 2 at every point.
3. The map B > x +— h%*(&,) € N is constant.
Then
1. R'7.£ is torsion free.

2. Let k denote the rank of R*7.& and s = (s1,...,s1) be a system of sections in H°(B, R*7,.E)
such that s(z) is linearly independent in the fiber R'm.E(x) for every x € B\ BN(E).
Then s(z) is linearly independent in R'mw.E(x) for every x € B.

Proof: The first statement follows from Proposition 68. For the second, denote by F the
torsion free sheaf R'm.£ on B. Since the map B > = — h?(€,) € N is constant, it follows
by Grauert’s theorems that R%r,.E is locally free and that R%r.E , R'7.£ commute with base
changes ([2] Theorem 3.4 p. 116). In particular the canonical morphisms Rim.&(x) — H'(&;)
are isomorphisms for ¢ = 1, 2, and for every x € B.

By Riemann-Roch theorem and the third assumption it follows that the map B > = —
h'(&,) is constant on B\ BN (), and the the sheaf R'7,£ is locally free on this open subset. The
system s defines a morphism o : ng — F, which is a bundle isomorphism on B\ BN (£). We
will show that o(x) : C¥ — F(x) is injective for any 29 € BN(E). Let 2y be such a point and
S C B be smooth locally closed surface such that SNBN(€) = {zo}, let 7% : PS := 771(9) — S
the restriced fibrations, and £% := & |ps. Recalling that R'm, commutes with base changes we
put

FS:=R73&5 = Flg .

'Being reduced at a point is an open property. Indeed the set of points of a complex space X at which X is
reduced coincide with the complement of the support of the ideal sheaf of nilpotents of the structure sheaf Ox. On
the other hand Z(y) is reduced at = because it is irreducible at this point. Note that being irreducible at a point is
not an open property in complex analytic geometry.
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It suffices to prove that the restriction og : O?k — F* induces a monomorphism CF —
FS(zo) = F(xo). By Lemma 71 below, it suffices to prove that the induced morphism o :

v
[FSNL — [ijs} is surjective. Since S is a smooth surface and [F*]V is reflexive on S, it will

also be free by [20] Corollary 5.20. The morphism [F5]Y — [ng] Vs just a morphism of rank
k locally free sheaves on S; AF(c¥) is an isomorphism on S\ {z¢}, so it will be an isomorphism
everywhere on S. Therefore o¢ is an isomorphism on S.

O

Lemma 6. 71 Let (A,m) be a local ring with residual field K, and f : U — V an A-module
morphism, where U is free and finitely generated. If the the morphism fY : VV — UV is
surjective, then the induced vector space morphism ¢ : K™ ~U @4 K — V ®4 K is injective.

Proof: Let 2 € Ker ¢, and let u be a lift of « in U. The condition ¢(z) = 0 becomes f(u) € mV.
Since fV is surjective, one obtains for every u € UV an element v € V' such that fV(v) = u, so

(u,u) = (f(v),u) = (v, f(u)) €m,

In particular the components u; of u with respect to a basis in U belong all to m, so u € mU.
|
Corollary 6. 72 Suppose that

1. The fibers of w are connected surfaces.

2. The Brill-Noether locus
BN(E):={x € B| h°(&,) #0} C B

has codimension > 2 at every point.
3. The map B > x + h*(&,) € N is constant

4. The rank of the coherent sheaf R'w.E is k and there exists a system of global sections s =
(81,.-.,8k) in HO(B, R'm.E) such that s(z) is linearly independent in the fiber R m.E(x)
for every x € B\ BN (E)

Then R'w.E is free of rank k.

Proof: By the previous theorem, R,.£ is torsion free of rank k. By [20] Prop 5.14, there is a
covering of B by open sets U such that there exists an injective morphism ay : Rlﬂ*c‘)w — (9(’}.
Besides, the global sections s define a sheaf morphism o : O% — R'm,£ by

a(V): Ok (V) — RYZm.E(V)

k
(f17"'7fk) = Zi:lfisi
for every open set V' C B. Therefore ¢ := aoo|y : Ok — OF is an injective morphism outside
an at least 2-codimensional analytic set. Therefore ¢ is an isomorphism, the exact sequence
0055 R'mEy —Q—0

1

has a retraction r = ¢~ o0 : le*S‘U — O,’ﬂ therefore splits. Since Q is a torsion sheaf we
deduce from R17T*5|U ~ (’)[k] ® Q that Q = 0, hence R'7,.£ is locally free. O
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6.3 Infinitesimal logarithmic deformations: the hard part

We give in this section the proof of proposition 3.17.

Since 0(0) = O,,—1 is the intersection of two transversal rational curves which are contracted
by F, there is a conjugation by a linear map ¢ (in particular birational) such that ¢~ 'F¢ =
F' =1I'0’, satisfies

!/ !
ool 0oy

(5) () = 522(0) = 0

It means that ¢'~1(C,,_1) is tangent to 2o = 0 and the other curve is tangent to z; = 0,
therefore their strict transforms meet the exceptional curve Cy respectively at {u’ = v’ = 0}
and {u =v =0}.

Therefore in the following computations we shall suppose that the condition (S) is satisfied.
Let " = ;041 0 --- 0 II,,_1 be the composition of blowing-ups at the intersection of two
curves and of II;, then it is the composition of mappings (u,v) — (uv,v) or (v/,v") — (v, u'v"),
and of II;(v/,v") = (v' 4+ a;_1,u'v"), hence

" (z,y) = (2Py? + ar—1,2"y°")

where < f g ) is the composition of matrices ( (1) 1 ) or ( (1) } ), the last one being of

da(pq>:iL
T S

HHO'H()(U(],’U()) = H//(Jl(UO’Uo,Uo), O’Q(’U,(ﬂ)o, ”Uo)) = ((Tfo’g(Uo’Uo,’Uo) + (ll_l,O"IO';(’UJQ’Uo,’Uo)).

the second type, therefore

We have

First case: there are at least two singular sequences, then
I<p<r, 1<q<s, p+tqg<r+s.

The jacobian is

p

P18 (uguo, vo) Pug, vo)  obad ™ (uguo, v0)Q(uo, vo)

Voo
D(H”O’H())(UQ, ’Uo) =

0005710571 (ugvg, vo) R(ug, vo) 0{710571 (ugvo, vo)S (1o, vo)

where

P(u,v) = poa(uv,v)0101(uv,v) + qoy (uv, v)O1 02 (uv, v),
Q(u,v) = poa(uv,v) (u@lal(uv, v) + 01 (uv, v)) + go1(uv,v) (u@lag(uv, v) + Oa0a(uv, v))

R(u,v) = rog(uv, v)0101(uv, v) + so1(uv, v)d1oa(uv, v)

S(u,v) = ros(uv,v) (u@lol(uv, v) + 0201 (uv, ’U)) + so1(uv,v) (ualag(uv, v) + 0202 (uv, v))

Fori=1,...,1 — 1 we have also
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In the local chart (u;, v;) containing O;, for ¢ = 0,...,l —1, X; is tangent to C; = {v; = 0},
hence we have

A, (uq, ;)
Xi(ui,v;) =
v Bi(ui, ;)
Fori=0,...,l — 2, we have at the point
(ui, vi) = Wig1 (Uig1, vig1) = (Wip1Vig1 + @i, Vig1),

A (Uit1Vig1 + a4, Vig1) Vig1  Uit1 Aip1(Wig1, vig1) Q;

Vi1 B (Uig1vi41 + @i, Vig1) 0 1 Vi1 Bip1 (Wig1, vig1) 0

For ¢ =1 — 1, at the point
(w—1,v-1) = " oo olly(ug,vo) = H/I(al(UOUOvUO)7 02(1&0@077}0)))
= (oVo5(uovo, vo) + ar—1, 0705 (ugvo, v0)),
Aj—1 ("o Tg (uo, vo)) Ao(uo,vo) a1
—D(H//O'I—Io)(’LLQ,Uo) =
0’{0‘5(’&07}0,’Uo)Bl,l(H”(J'H()(UQ,’Uo)) UOBO(UO,UO) 0

Equivalently, we obtain
For:=0,...,1—2,

(1;) Ai(wig1vi41 + a4, Vip1) — Vi1 {Aip1 (Wig1, Vig1) + Uig1 Biga (Wig1,vi41)} = oy

([Iz) Bi(ui+1vi+l + a;, Uz'+1) - Bi+1(ui+1a ”Uz'+1) =0

For i = [ — 1, omitting subscripts,

(I,_1) A1 (1" oo o Tg(u,v)) — vofﬁlagfl(uv,v){P(u, v)Ao(u,v) + Q(u, v)Bo(u,v)} =1

(I5,—1)  o1o2(uv,v)Bi_1 (11" o 0 o Ty(u,v)) — U{R(u, v)Ag(u,v) + S(u, v)Bo(u, v)} =0
For i =0,...,1 — 1 and for v;41 = 0 the equations (I;) yield,

(1) Ai(a;,0) = ;.

We put v, =¢;,+a;,0=0,...,1—1,

Ai(ug,v;) = Ai(a,0) + A;(ti,vi) = A;(a;,0) + Z a;ktgvf,
J+k>0

Bi(us,v;) = Bi(a;, 0) + Bj(ti, v;) = Bi(a;,0) + Z b;ﬂf”f
k>0

Fori=0,...,l —2, equations (II;) give

(2) B := Bo(ao,O) =...= Bl_l(ag_l,O),
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(3) Bi(t1,0) == Bj_(ti-1,0) = 0.

Replacing A; and B; by their expressions we have by (2),
Fori=0,...,0—2,

AL ((tig1 + Qig1)Vig1, Vig1) — Ui+1{Ai+1(ai+la 0) + Afyy (tig1,vig1)

(£;)
+(tit1 + aiy1)[B+ B§+1(ti+17vi+1)]} =0

(117) Bi((tig1 + air1)vir1,vig1) = Biyi(tiv1,vig1) =0

Aj_i (o705 (uv,v), 0703 (uv, v))
i) o

—vol " ad” (uv,v){P(u,v) [Ao(ao,0) + Aj(t,v)] + Q(u,v)[B + Bj(t, v)]} =0

o102(uwv,v)[B + B]_, (07 0d(w,v), 0705 (uwv,v))]

(1)

—o{ R(u,v) [Ao (a0, 0) + Aj(t,0)] + S(u,v) [B+ By(t,v)] } =0

Now, from the equations I and II/, 0 < i < [ — 1, we show that some terms vanish. In
fact: Fori=0,...,l—2, we divide (I]) by v;y1, we set v;41 = 0, we apply (3), and we compare
linear terms:

(4) ago_aioz“':alﬁz—alﬁl:B-
Equations (4) give
() afo—ay' —(=1)B=0
Fori=0,...,l -2, we divide (II}) by v;11, we set v;11 = 0, we apply (3):

(6) bloar + b0y — by =0, by =--- = by .

(7) b}():...:bllalzo.

Dividing (I]_,) by v?e? o™  (uv,v), setting v = 0, recalling that d;02(0) = d201(0) = 0
and cancelling the factor d101(0)0202(0) # 0, we obtain

() bt +a0) ~ {p[Ao(a0,0) + A5(t,0)] + (p-+ @)t + ao)[B+ Bi(1,0)] } =0
Constant part of (8) is

(9c) agaty' — {pAo(ao, 0) + (p + q)agB} = 0

Linear part of (8) is

(9) pajo —ag' + (0 + 9B + (p + @)aohly = 0

Dividing (I1]_,) by v?, setting v = 0 and cancelling the factor term 9;01(0)9202(0) # 0, we
obtain

(10) (t+ ag)B — r[Ag(ao, 0) + Ay(t,0)] — (r + s)(t + ao) [B + Bj(t,0)] =0
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Constant part of (10) is

(11,) rAp(ag,0) + (r+s—1)agB=0
Linear part of (10) is

(11y) raly + (r+s—1)B+ (r + s)aghly, =0

The determinant of the linear system (5), (9.), (9), (11.) and (11;) with unknowns a$, a’g?,
Ao(ag,0), B and b is

1 -1 0 —(-1) 0

0 a -p —(pP+qao 0
A= |p -1 0 P+a)  (P+ao

0 0 r (r+s—1)ag 0

r 0 0 (r+s—1) (r+s)ao

= aj(ps - qr){(ps —qr) +1-(p+s) - Tl} # 0
Therefore, by (4), (6) and (7)
(12) ady=---=dy'=B=0, b =---=0b5" and b, =---=b;' =0.

Moreover we obtain

(13) ap = Ao(ao,O) = 0.

Second case: there is only one singular seqgence s,,, m > 1, then

p ¢\ _ (01 1 1\"" (o0 1
r s /) 11 0 1 A1 m
11" 011 (o, vo) = (02(uovo, v0) + ai—1, 0105 (ugvo, vo))
vP(u,v) Q(u,v)
D(H”UHO) (u,0) =
voyHuw, v)R(u,v) o5 Huw,v)S (u, v)

where
P(u,v) = 01o2(uv,v)
Qu,v) = udioa(uv,v)+ daoa(uv,v)
R(u,v) = 020101(uv,v) + mo10102(uv,v)
S(u,v) = oa(uv,v) (ualol(uv, v) + 0201 (uv, v))

+mo1(uv,v) <u8102 (uv,v) + daoa(uv, v))
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The new equations are

(i

1) A;—l(JQ (’LLU, v)v Ulagl(uva 1}))
—o{ P(u,0)[Ao(ao,0) + Ap(t, v)] + Q(u,0)[B + By (t, v)] } = 0

(I1]_y) o102(uv,v) (B + B|_(o2(uv,v), 0105 (uv, v)))

—o{ Ru,v)[Ao(ao, 0) + Ay(t, v)] + S(u,v) B+ By(t,v)]} = 0

The end of the proof follows the same lines than in the first case. Details are left to the

reader.

Remark 6. 73 By induction it is possible to show that for any k <r+s— (p+ q), a similar
Cramer system may by defined and that cp, = 0. However, it is not possible to achieve the proof
in this way because when k =r+s— (p+q) a new unknown appears. This difficulty is explained
by the fact that in general there is a relation among the 6°’s, as we shall see in the sequel.
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