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Abstract

For any minimal compact complex surface S with b2(S) > 0 containing global spherical
shells (GSS) there exists a family of surfaces S → B with GSS which contains as fibers S, some
Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically
effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. In case
of surfaces with a cycle and one tree of rational curves we give new normal forms of contracting
germs in Cremona group Bir(P2(C)) and show that they admit a birational structure. These
families contain all possible surfaces, in particular all surfaces S with GSS and 0 < b2(S) ≤ 3
admit a birational structure.
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1 Introduction

Hopf surfaces are defined by contracting invertible germs F : (C2, 0) → (C2, 0). There are
well-known normal forms

F (z1, z2) = (az1 + tzm2 , bz2), 0 < |a| ≤ |b| < 1, (a− bm)t = 0, m ∈ N?,

which give effective parameters of the versal deformation and give charts with transition map-
pings in the group Aut(C2) of polynomial automorphisms of C2, in particular in the Cremona
group Bir(P2(C)) of birational mappings of P2(C). Hopf surfaces are particular cases of a
larger family of compact complex surfaces in the VII0 class of Kodaira, namely surfaces S
containing global spherical shells (GSS). When b2(S) ≥ 1, these surfaces admit neither affine
nor projective stuctures [17, 21, 18]. Their explicit construction consists in the composition
Π of n = b2(S) blowing-ups (depending on 2n parameters) followed by a special glueing by a
germ of isomorphism σ (depending on an infinite number of parameters). These surfaces are
not almost homogeneous [26] hence 0 ≤ dimH0(S,Θ) ≤ 1 and Chern classes of surfaces in class
VII0 satisfy the conditions b2(S) = c2(S) = −c21(S). By Riemann-Roch formula, we obtain the
dimension of the base of the versal deformation of S,

2n ≤ dimH1(S,Θ) = 2b2(S) + dimH0(S,Θ) ≤ 2n+ 1,

where Θ is the sheaf of holomorphic vector fields.
Some questions are raised

(1) Are the 2n parameters of the blown up points effective parameters ?

(2) If there are non trivial global vector fields, there is at least one missing parameter. How
to choose it ?

(3) Do compact surfaces with GSS admit a birational structure, i.e. is there an atlas with
transition mappings in Cremona group Bir(P2(C)). More precisely is there in each con-
jugation class of contracting germs of the form Πσ (or of strict germs, following Favre
terminology [13]) a birational representative ?

Known results:

• If S is a Enoki surface (see [8]) or a Inoue-Hirzebruch surface (see [6]) known normal
forms, namely

F (z1, z2) = (tnz1z
n
2 +

n−1∑
i=0

ait
i+1zi+1

2 , tz2), 0 < |t| < 1,

and
N(z1, z2) = (zp1z

q
2 , z

r
1z
s
2),

respectively, are birational. Here

(
p q
r s

)
∈ Gl(2,Z) is the composition of matrices

(
1 1
0 1

)
or

(
0 1
1 1

)
with at least one of the second type.
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• If S is of intermediate type (see definition in section 2), there are normal forms due to
C.Favre [13]

F (z1, z2) = (λz1z
s
2 + P (z2), zk2 ), λ ∈ C?, s ∈ N?, k ≥ 2,

where P is a special polynomial. These normal forms are adapted to logarithmic deforma-
tions and show the existence of a foliation, however are not birational. In [25] K.Oeljeklaus
and M.Toma explain how to recover second Betti number which is now hidden and give
coarse moduli spaces of surfaces with fixed intersection matrix,

• Some special cases of intermediate surfaces are obtained from Hénon mappings H or
composition of Hénon mappings. More precisely, the germ of H at the fixed point at
infinity is strict, hence yields a surface with a GSS [16, 10]. These germs are birational.

Motivation:
Let S be a minimal compact complex surface with Betti numbers b1(S) = 1, n = b2(S) > 0,
the class of such surfaces will be denoted VII+

0 . We consider the following conditions:

(A) S contains a global spherical shell (GSS),

(B) S contains b2(S) rational curves,

(C) S contains a cycle of rational curves,

(D) S admits a deformation into b2(S) times blown up Hopf surfaces.

Conjecture: All these properties are equivalent, and any class VII+
0 surface possesses a global

spherical shell (GSS) i.e. an open submanifold biholomorphic to a standard neighborhood of S3

in C2 which does not disconnect the surface.

We have
(A)⇐⇒ (B) =⇒ (C) =⇒ (D)

In fact (A) =⇒ (B) by the construction of GSS surfaces and (B) =⇒ (A) by [11],
(A) =⇒ (C) also by construction (see [5]) The implication (C) =⇒ (D) has been obtained by
I. Nakamura [23, 24].
The strategy developped in [27, 28] is aimed to show that any surface in VII+

0 satisfies condition
(C), therefore the solution to the following problem would be a step toward the conjecture:
Problem: Let S → ∆ be a family of compact surfaces over the disc such that for every u ∈ ∆?,
Su contains a GSS. Does S0 contain a GSS ? In other words, are the surface with GSS closed
in families ?
To solve this problem we have to study families of surfaces in which curves do not fit into flat
families, the volume of some curves in these families may be not uniformly bounded (see [12])
and configurations of curves change. Favre normal forms of polynomial germs associated to
surfaces with GSS, cannot be used because the discriminant of the intersection form is fixed.
Moreover, if using the algorithm of [25] we put F under the form Πσ, σ is not fixed in the
logarithmic family, depends on the blown up points and degenerates when a generic blown up
point approaches the intersection of two curves.
Therefore this article focuses on the problem of finding new normal forms of contracting germs
in intermediate cases of surfaces with fixed σ, such that surfaces are minimal or not and
intersection matrices are not fixed. Since usual holomorphic objects, curves or foliations, do
not fit in global family, it turns out that birational structures could be the adapted notion.
Clearly the problem of their unicity raises.

Main results: In section 2, we define large families ΦJ,σ : SJ,σ → BJ of marked surfaces with
GSS with fixed second Betti number n = b2(S) which use the same n charts of blowing-ups
identified by a subset J ⊂ {0, . . . , n− 1}. The base admits a stratification by strata over which
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the intersection matrix of the n rational curves is fixed. With these fixed charts, we construct
explicit global sections of the direct image sheaf of the vertical vector fields R1ΦJ,σ,?Θ over
BJ , which express the dependence on the parameters of the blown up points: [θi] are the
infinitesimal deformations along the rational curves and [µi], i = 0, . . . , n− 1 the infinitesimal
deformations transversaly to the rational curves. Surfaces with non trivial global vector fields
exist over an analytic set of codimension at least 2 by [9]. In the following theorem we call a
“marked surface” a surface with the choice of a rational curve. It fixes the conjugacy class of
a contracting germ. Using a result of A.Teleman (see Appendix) we obtain in section 3,

Theorem 1. 1 Let (S,C0) be a minimal marked surface containing a GSS of intermediate
type, with n = b2(S). Let J = I∞(C0) and let ΦJ,σ : SJ,σ → BJ be the family of surfaces with
GSS associated to J and σ. Then, there exists a non empty hypersurface TJ,σ ⊂ BJ containing
Z = {u ∈ B | h0(Su,Θu) > 0} such that for u ∈ BJ \ TJ,σ,

a) {[θiu], [µiu] | 0 ≤ i ≤ n− 1} is a base of H1(Su,Θu),

b) {[θiu] | Oi is generic} is a base of the space of infinitesimal logarithmic deformations
H1(Su,Θu(−Log Du)), where Du is the maximal divisor in Su.

Moreover

i) If TJ,σ intersects a stratum BJ,M then TJ,σ ∩BJ,M is a hypersurface in BJ,M ,

ii) TJ,σ intersect each stratum BJ,M such that the corresponding surfaces admit twisted vector
fields and Z ∩BJ,M ⊂ TJ,σ,

Corollary 1. 2 Any marked surface (S,C0) belongs to a large family ΦJ,σ : SJ,σ → BJ and
there is a non empty hypersurface TJ,σ such that over BJ \ TJ,σ this family is versal.

This answers to the first question and the result is the best possible because TJ,σ is never
empty. What happens on the hypersurface TJ,σ ? Is it possible that there is a curve of
isomorphic surfaces ? Is the canonical image of a stratum BJ,M in the Oeljeklaus-Toma coarse
moduli space open ? Do we obtain all possible surfaces ?
In order to be self-contained, we explain in section 4 some results in [25], because Favre normal
forms are more convenient for computations. When the dual graph of the curves is a cycle with
only one tree, we show that the new normal forms

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)r
zs2

)

which are composed of l generic blowing-ups, n− l non generic blowing-ups determined by the
matrix (

p q
r s

)
∈ Gl(2,Z),

and if necessary an invertible polynomial mapping tangent to the identity, give all the possible
surfaces. In this situation we give explicitly the missing parameter and show that the hyper-
surface TJ,σ is a ramification hypersurface, in particular the canonical mapping from a stratum
to the Oeljeklaus-Toma coarse moduli space is a ramified covering. More precisely (see section
5) we have

Theorem 1. 3 Denote s := p+ q+ l− 1 and d := (r+ s)− (p+ q). We choose a0 ∈ C? and ε
such that εr+s−1 = 1. Then
A) If r + s− 1 does not divide l − d or λ 6= 1 there is a bijective polynomial mapping

fa0,ε : Cl−1 −→ Cl−1

a = (a1, . . . , al−1) 7−→
(
bp+q+1(a), . . . , bp+q+l−1(a)

)
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such that

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

)r
zs2

)
is conjugated to the polynomial germ

F (z1, z2) =

λz1z
s
2 +

s∑
i=p+q

biz
i
2, z

r+s
2

 ,

where λ depends only on a0 by 5.51.
B) If l − d = K(r + s− 1) and λ = 1, there is a bijective polynomial mapping

fa0,ε : Cl−1 × C −→ Cl−1 × C
a = (a1, . . . , al−1, al+K) 7−→

(
bp+q+1(a), . . . , bp+q+l−1(a), c(a)

)
such that

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)r
zs2

)

is conjugated to the polynomial germ

F (z1, z2) =

λz1z
s
2 +

s∑
k=p+q

bkz
k
2 + cz

sk(S)
k(S)−1

2 , zr+s2

 .

Corollary 1. 4 Let S in class VII+
0 containing a GSS. Suppose that the dual graph of the

rational curves contains a cycle with only one tree, then S admits a birational structure. In
particular if b2(S) ≤ 3 all surfaces admit birational structures.

On the traces TJσ∩BJ,M of the hypersurface TJ,σ on each stratum BJ,M the canonical mapping
to the Oeljeklaus-Toma coarse moduli space is ramification locus. There is only one missing
parameter denoted al+K . This answers to the questions (2) and (3) in the case of cycles with
one tree. The simplest situation for b2(S) = 2 is treated in details at the end of section 4.
It is conjectured that the composition of ρ germs of the type of G give all surfaces with ρ trees
of rational curves.
This article stems from discussions with Karl Oeljeklaus and Matei Toma at the university of
Osnabrüch about the case b2(S) = 2, I thank them for their relevant remarks. I thank Andrei
Teleman for fruitful discussions in particular to have explained me that thanks to his results
(see Corollary 6.72 in Appendix) the cocycles θi and µi cannot be everywhere independent.

2 Surfaces with Global Spherical Shells

2.1 Basic constructions

Definition 2. 5 Let S be a compact complex surface. We say that S contains a global spherical
shell, if there is a biholomorphic map ϕ : U → S from a neighbourhood U ⊂ C2 \ {0} of the
sphere S3 into S such that S \ ϕ(S3) is connected.

Hopf surfaces are the simplest examples of surfaces with GSS.

Let S be a surface containing a GSS with n = b2(S). It is known that S contains n
rational curves and to each curve it is possible to associate a contracting germ of mapping
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F = Πσ = Π0 · · ·Πn−1σ : (C2, 0) → (C2, 0) where Π = Π0 · · ·Πn−1 : BΠ → B is a sequence of
n blowing-ups and σ is a germ of isomorphism (see [5]). The surface is obtained by gluing two
open shells as explained by the following picture

{1n
C

1C
0C

0
C

¦±¾are identified by    

Both open spherical shells

{1n
¦

1
¦

0
¦ ¾

B

Definition 2. 6 Let S be a surface containing a GSS, with n = b2(S). A Enoki covering of
S is an open covering U = (Ui)0≤i≤n−1 obtained in the following way:

• W0 is the ball of radius 1 + ε blown up at the origin, C0 = Π−1
0 (0), B′0 ⊂⊂ B0 are small

balls centered at O0 = (a0, 0) ∈W0, U0 = W0 \B′0,

• For 1 ≤ i ≤ n− 1, Wi is the ball Bi−1 blown up at Oi−1, Ci = Π−1
i (Oi−1), B′i ⊂⊂ Bi are

small balls centered at Oi ∈Wi, Ui = Wi \B′i.
The pseudoconcave boundary of Ui is patched with the pseudoconvex boundary of Ui+1 by Πi,
for i = 0, . . . , n− 2 and the pseudoconcave boundary of Un−1 is patched with the pseudoconvex
boundary of U0 by σΠ0, where

σ : B(1 + ε) → Wn−1

z = (z1, z2) 7→ σ(z)

is biholomorphic on its image, satisfying σ(0) = On−1.

If we want to obtain a minimal surface, the sequence of blowing-ups has to be made in the
following way:

• Π0 blows up the origin of the two dimensional unit ball B,

• Π1 blows up a point O0 ∈ C0 = Π−1
0 (0),. . .

• Πi+1 blows up a point Oi ∈ Ci = Π−1
i (Oi−1), for i = 0, . . . , n− 2, and

• σ : B̄ → BΠ sends isomorphically a neighbourhood of B̄ onto a small ball in BΠ in such
a way that σ(0) ∈ Cn−1.

Each Wi is covered by two charts with coordinates (ui, vi) and (u′i, v
′
i) in which Πi writes

Πi(ui, vi) = (uivi + ai−1, vi) and Πi(u
′
i, v
′
i) = (v′i + ai−1, u

′
iv
′
i). In these charts the exceptional

curves has always the equations vi = 0 and v′i = 0.
A blown up point Oi ∈ Ci will be called generic if it is not at the intersection of two curves.
The data (S,C) of a surface S and of a rational curve in S will be called a marked surface.

We assume that S is minimal and that we are in the intermediate case, therefore there is
at least one blowing-up at a generic point, and one at the intersection of two curves (hence
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n ≥ 2). If there is only one tree i.e. one regular sequence and if we choose C0 as being the
curve which induces the root of the tree, we suppose that

• Π1 is a generic blowing-up,

• Πn−1 blows-up the intersection of Cn−2 with another rational curve and

• σ(0) is one of the two intersection points of Cn−1 with the previous curves.

The Enoki covering is obtained as in the following picture:

of a surface with one tree

Enoki covering

{1nC

{1n¦

+2l¦

+1lC

+1l¦

{1lC

lC
0);

{1l
a(

{2lC

{1lC

{2lC

0);
{2l

a(

0);
0
a(

0C

1C

)';v'u()'v';u
{1l

a+'v(

l¦

);v{2la+uv( )u;v(

{1l¦

{2l¦

2¦

)v ; 0a+uv(

)u;v(

)uv;v(7!)u;v(

¾

g=01zf=kC

g=02zf={1nC

k
C

{1nC

0
C

1
U

0¦

1
¦

0

0U

where

• 1 ≤ l ≤ n− 1 and n ≥ 2. If all, but one, blowing-ups are generic, then l = n− 1

• For i = 1, . . . , l − 1, Πi(ui, vi) = (uivi + ai−1, vi) are generic blowing-ups,

• Πl(u
′
l, v
′
l) = (v′l + al−1, u

′
lv
′
l) is also generic, but Ol is the origin of the chart (u′l, v

′
l),

• For i = l+ 1, . . . , n− 1, Πi(ui, vi) = (uivi, vi) or Πi(u
′
i, v
′
i) = (v′i, u

′
iv
′
i) are blowing-ups at

the intersection of two curves.
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The general case of ρ ≥ 1 trees is obtained by joining ρ sequences similar to the previous
one, i.e.,

F = Πσ

= (Π0 · · ·Πl0−1Πl0 · · ·Πn1−1) · · ·

(Πn1+···+nκ · · ·Πn1+···+nκ+lκ−1Πn1+···+nκ+lκ · · ·Πn1+···+nκ+nκ+1−1) · · ·

(Πn1+···+nρ−1
· · ·Πn1+···+nρ−1+lρ−1−1Πn1+···+nρ−1+lρ−1

· · ·Πn1+···+nρ−1)σ.

where n1 + · · ·+ nρ = n.

=2½

We may suppose, up to a conjugation of F by a linear map, that

∂1σ2(0) =
∂σ2

∂z1
(0) = 0

it means that the strict transform of the curve σ−1(Cn−1) intersects C0 at the infinite point of
the chart (u, v), i.e. the origin of (u′, v′). This condition is convenient for computations.
When n = 2, we denote by U01 = U0 ∩ Π1(U1) ⊂ U0 and U10 = U1 ∩ σΠ0(U0) ⊂ U1 the two
connected components of the intersection U0 ∩ U1 of the images in S of U0 and U1, denoted in
the same way.
If n ≥ 3, Ui,i+1 = Ui ∩Πi+1(Ui+1), i = 0, . . . , n− 2, Un−1,0 = Un−1 ∩ σΠ0(U0).
We refer to [5] for the description of configurations of curves. We index the curves (Ci)i∈Z in
the universal covering space following the canonical order (see [5]). Let a(S) = (ai)i∈Z be the
family of positive integers defined by ai = −C2

i . By [5] p104, this family is periodic of period
n and for any index i ∈ Z we define a positive integer independant of i,

2n ≤ σn(S) :=

i+n−1∑
j=i

ai ≤ 3n.

The family (ai)i∈Z splits into sequences

sp = (p+ 2, 2, . . . , 2) and rm = (2, . . . , 2)

of length respectively p and m, where p ≥ 1 and m ≥ 1. We call sp (resp. rm), p ≥ 1 (m ≥ 1)
the singular (resp. regular) sequence of length p (resp. m). We have

ρ := ]{trees} = ]{regular sequences}.

2.2 Large families of marked surfaces

With the previous notations, we consider global families of minimal compact surfaces with
the same charts, parameterized by the coordinates of the blown up points on the successive
exceptional curves obtained in the construction of the surfaces and such that any marked
surface with GSS (S,C0) belongs to at least one of these families. More precisely, let F (z) =

8



Π0 · · ·Πn−1σ(z) be a germ associated to any marked surface (S,C0) with tr(S) = 0. In order
to fix the notations we suppose that C0 = Π−1

0 (0) meets two other curves (see the picture after
definition 2.6), hence σ(0) is the intersection of Cn−1 with another curve. We suppose that

∂1σ2(0) = 0.

We denote by I∞(C0) ⊂ {0, . . . , n − 1} the subset of indices which correspond to blown up
points at infinity, that is to say,

I∞(C0) :=
{
i | Oi is the origin of the chart (u′i, v

′
i)
}
.

Each generic blow-up

Πi(ui, vi) = (uivi + ai−1, vi) or Πi(u
′
i, v
′
i) = (v′i + ai−1, u

′
iv
′
i)

may be deformed moving the blown up point (ai−1, 0). If we do not want to change the
configuration we take

for all κ = 0, . . . , ρ− 1 (with n0 = 0),
an1+···+nκ ∈ C?,

∀i, 1 ≤ i ≤ lκ − 1, an1+···+nκ+i ∈ C,

∀j, 0 ≤ j ≤ nκ+1 − lκ − 1, an1+···+nκ+lκ+j = 0.

The mapping σ is supposed to be fixed. We obtain a large family of compact surfaces which
contains S such that all the surfaces Sa have the same intersection matrix

M = M(Sa) = M(S),

therefore are logarithmic deformations. For J = I∞(C0) we denote this family

ΦJ,M,σ : SJ,M,σ → BJ,M

where

BJ,M

:= C? × Cl0−1 × {0}n1−l0 × · · · × C? × Clκ−1 × {0}nκ+1−lκ × · · · × C? × Clρ−1−1 × {0}nρ−lρ−1

' C? × Cl0−1 × · · · × C? × Clκ−1 × · · · × C? × Clρ−1−1

and n1 + · · ·+ nρ = n.

In SJ,M,σ there is a flat family of divisors D ⊂ S with irreducible components

Di, i = 0, . . . , n− 1,

such that for every a ∈ BJ,M , M = (Di,a.Dj,a)0≤i,j≤n−1. We may extend this family towards
smaller or larger strata which produce minimal surfaces:

• On one hand, towards a unique Inoue-Hirzebruch surface: Over

Cl0×{0}n1−l0×· · ·×Clκ×{0}nκ+1−lκ×· · ·×Clρ−1×{0}nρ−lρ−1 ' Cl0×· · ·×Clκ×· · ·×Clρ−1 ,

ΦJ,σ : SJ,σ → Cl0 × · · · × Clκ × · · · × Clρ−1 .
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If for an index κ, an1+···+nκ = 0, there is a jump in the configuration of the curves. For
instance, if for all κ, κ = 0, . . . , ρ− 1

an1+···+nκ = · · · = an1+···+nκ+lκ−1 = 0

we obtain a Inoue-Hirzebruch surface. To be more precise the base

Cl0 × · · · × Clκ × · · · × Clρ−1

splits into locally closed submanifolds called strata

– the Zariski open set C? × Cl0−1 × · · · × C? × Clκ−1 × · · ·C? × Clρ−1−1,

– ρ = C1
ρ codimension one strata

C? × Cl0−1 × · · · × {0} × C? × Clκ−2 × · · · × C? × Clρ−1−1, 0 ≤ κ ≤ ρ− 1,

– Cpρ+p−1 codimension p strata, 1 ≤ p := p0 + · · ·+ pρ−1 ≤ l0 + · · ·+ lρ−1,

{0}p0×C?×Cl0−p0−1×· · ·×{0}pκ×C?×Clκ−pκ−1×· · ·×{0}pρ−1×C?×Clρ−1−pρ−1−1

• On second hand, towards Enoki surfaces. If for all indices such that Oi is at the in-
tersection of two rational curves, in particular for i ∈ J , the blown up point Oi is moved
to Oi = (ai, 0) with ai 6= 0, all the blown up points become generic, the trace of the
contracting germ is different from 0. We obtain also all the intermediate configurations.

Proposition 2. 7 There is a monomial holomorphic function t : CCard J → C depending
on the variables aj, j ∈ J such that over BJ := {|t(a)| < 1} ⊂ Cn, the family ΦJ,σ :
SJ,σ → BJ may be extended and for every a ∈ BJ , t(a) = tr (Sa).

Proof: The trace of a surface does not depend on the germs associated to this surface
therefore we may suppose that O0 = (a0, 0) is in the chart (u′0, v

′
0), i.e. 0 ∈ J .

Suppose that Card J = 1, then for i 6= 0, Πi(ui, vi) = (uivi + ai−1, vi) and

σ(z) = (σ1(z) + an−1, σ2(z)).

We have

(♠)

F (z) = Πσ(z) = Π0

(
σ1(z)σ2(z)n−1 +

n−1∑
j=0

ajσ2(z)j , σ2(z)
)

=
(
σ2(z), σ1(z)σ2(z)n +

n−1∑
j=0

ajσ2(z)j+1
)
,

and with our convention on σ,

trDF (0) = tr

(
∂1σ2(0) ∂2σ2(0)
a0∂1σ2(0) a0∂2σ2(0)

)
= tr

(
0 ∂2σ2(0)
0 a0∂2σ2(0)

)
= a0∂2σ2(0).

The general case is obtained by the composition F = F1 ◦ · · · ◦ FN , where N = Card J ,
FN of the type of (♠)

FN (z) =
(
σ2(z), σ1(z)σ2(z)mN +

mN−1∑
j=0

aNj σ2(z)j+1
)
, mN ≥ 1
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and other Fk have similar expressions with σ = Id and mk ≥ 1, i.e.

Fk(u, v) =
(
v, uvmk +

mk−1∑
j=0

akj v
j+1
)

with m1 + · · ·+mN = n. Therefore

F (z) =
(
? , ∂2σ2(0)a1

0a
2
0 · · · aN0 z2

)
and trDF (0) = ∂2σ2(0)a1

0a
2
0 · · · aN0 . �

Now, BJ ⊂ Cn is an open neighbourhood of

Cl0 × {0}n1−l0 × · · · × Clκ × {0}nκ+1−lκ × · · · × Clρ−1 × {0}nρ−lρ−1 .

and we extend the family
ΦJ,σ : SJ,σ → BJ .

thanks to proposition 2.7. We obtain larger strata of minimal surfaces, from dimension
l + 1 to dimension n.

Example 2. 8 1) Example with 2 curves: For (3, 2) = −(C2
0 , C

2
1 ), J = {1}, O0 = (a0, 0)

and O1 = (a1, 0) with a0 ∈ C?, a1 = 0. The stratum of Inoue-Hirzebruch surface (4, 2) is
obtained for a0 = 0, and generic surfaces are obtained for a0 ∈ C, a1 6= 0. If σ(z1, z2) =
(z1 + a1, z2),

F (z) = Πσ(z) =
(
z2(z1 + a1)(z2 + a0), z2(z1 + a1)

)
trDF (0) = a1, hence BJ = C×∆.

2) Example with 6 curves: If we start with the sequence

(42 2 3 3 2) = (s2r1s1s1r1) = −(C2
0 , C

2
1 , C

2
2 , C

2
3 , C

2
4 , C

2
5 )

J = {1, 4, 5}, and the blown up points are Oi = (ai, 0), i = 0, . . . , 5 with

a0 ∈ C?, a1 = 0, a2 = 0, a3 ∈ C?, a4 = 0, a5 = 0.

Strata towards Inoue-Hirzebruch surfaces are

• (522 3 3 2) when a3 = 0,

• (42 2 3 42), when a0 = 0,

• (522 3 42), when a0 = a3 = 0, which is a Inoue-Hirzebruch surface with one cycle.

Towards Enoki surfaces, we move each non generic point into generic one:

• (3 22 3 3 2) with a1 = 0, a2 ∈ C?,

• (222 3 3 2) with a1 ∈ C?,

• (42 22 3 2) with a4 ∈ C?,

• (42 2 3 22) with a5 ∈ C?,

• (3 222 3 2) with a1 = 0, a2 ∈ C?, a4 ∈ C?,

• (2222 3 2) with a1 ∈ C?, a4 ∈ C?,

• (3 22 3 22) with a1 = 0, a2 ∈ C?, a5 ∈ C?,

• (222 3 22) with a1 ∈ C?, a5 ∈ C?,

• (42 2222) with a4 ∈ C?, a5 ∈ C?,
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• (3 22222) with a1 = 0, a2 ∈ C?, a4 ∈ C?, a5 ∈ C?,

• (222222) with a1 ∈ C?, a4 ∈ C?, a5 ∈ C?

Remain non minimal surfaces: we still extend the previous family on a small neighbourhood
B̂J of BJ , moving the blown up point transversally to the exceptional curves Ci = {vi =
0} ∪ {v′i = 0}, introducing n new parameters

Πi(ui, vi) = (uivi + ai−1, vi + bi−1), or Πi(u
′
i, v
′
i) = (v′i + ai−1, u

′
iv
′
i + bi−1), |bi−1| << 1,

we obtain
Φ̂J,σ : ŜJ,σ → B̂J ,

with dim B̂J = 2n = 2b2. Since for any (a, b) ∈ B̂J , h1(Sa,b,Θa,b) = 2b2(Sa,b) + h0(Sa,b,Θa,b),
there are some questions:

• Are the parameters ai, bi, i = 0, . . . , n− 1, effective ?

• Which parameter to add when h1(Sa,b,Θa,b) = 2b2(Sa,b)+1 in order to obtain a complete
family ?

• If we choose σ = Id or more generally an invertible polynomial mapping, we obtain
a birational polynomial germs. Does this families contain all the isomorphy classes of
surfaces with fixed intersection matrix M ?

Remark 2. 9 It is difficult to determine the maximal domain B̂J over which Φ̂J,σ may be
defined. When the surface is minimal, i.e. when b = (b0, . . . , bn−1) = 0, Fa,b(0) = 0. However,
when b 6= 0, the fixed point ζ = (ζ1, ζ2) moves and the existence condition for the corresponding
surface is that the eigenvalues λ1 and λ2 of DFa,b(ζ) satisfy |λi| < 1, i = 1, 2.

2.3 Minimal and non minimal deformations

Let S = S(F ) be a minimal surface with GSS and U = (Ui,i+1) a Enoki covering of S. We
denote by (ei)0≤i≤n−1 the base of the free Z-module H2(S,Z) which trivializes the intersection
form, i.e. ei.ej = −δij . Here a simply minimal divisor is a connected divisor which may be
blown down on a regular point.

Proposition 2. 10 Let Φ̂J,σ : ŜJ,σ → B̂J be a large family of marked surfaces with GSS. Then
for any i = 0, . . . , n− 1 there exists

• A smooth hypersurface Hi ⊂ B̂J ,

• A flat family of divisors ΦJ,σ : Ei → B̂J \Hi,

such that

1. For any (a, b) ∈ B̂J \Hi, Ei,(a,b) is a simply exceptional divisor such that

[Ei,(a,b)] = ei,

2. S(a,b) contains a simply exceptional divisor Ei,(a,b) such that [Ei,(a,b)] = ei if and only if
(a, b) 6∈ Hi,

3. Any intersection Hi1 ∩· · ·∩Hip of p different such hypersurfaces is smooth of codimension
p.

Proof: The fundamental remark is that (a, b) ∈ Hi if and only if in the construction of the
surface S(a,b) there is a sequence of indices i, i + j1, . . . , i + jp = i mod n such that the curve
Ci+jk is blown up by Ci+jk+1

. If this sequence of blow-ups ends before reaching the index i,
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say at i + jq, Ci + Ci+j1 + · · · + Ci+jq would be a simply exceptional divisor. Therefore, the
total transform of Ci has to check

Oi−1 = (ai−1, bi−1) ∈ Π−1
i−1 · · ·Π

−1
0 σ−1Π−1

n−1 · · ·Π
−1
i+1(Ci),

or equivalently

Πi+1 ◦ · · · ◦Πn−1 ◦ σ ◦Π0 ◦ · · · ◦Πi−1(ai−1, bi−1) ∈ Ci = {vi = 0}.

We have

Πi+1(ui+1, vi+1) = (ui+1vi+1 + ai, vi+1 + bi) or Πi+1(u′i+1, v
′
i+1) = (v′i+1 + ai, u

′
i+1v

′
i+1 + bi)

therefore the condition the equation of Hi is

bi + P (a0, b0, . . . , ai−1, bi−1, ai+1, bi+1, . . . , an−1, bn−1, σ̃1(ai−1, bi−1), σ̃2(ai−1, bi−1)) = 0

where

• P is a polynomial,

• σ̃(ai−1, bi−1) = σ ◦Π0 · · · ◦Πi−1(ai−1, bi−1) does not depend on bi,

. . . and this is the equation of a smooth hypersurface. The third assertion follows readily from
the equations. �

3 Infinitesimal deformations of surfaces with GSS

3.1 Infinitesimal deformations of the families SJ,σ
We define the following cocycles which are the infinitesimal deformations of the families ŜJ,σ →
B̂J :

• For i = 0, . . . , n − 1, the cocycles θi called the “tangent cocycles” move the blown up
points Oi along the curve Ci and vanish only (at order two) at the point “at infinity”
Ci ∩ Ci−1,

• For i = 0, . . . , n− 1, the cocycle µi called the “tranversal cocycles” move Oi transversaly
to Ci

On a stratum where there are global twisted vector fields we need another infinitesimal defor-
mation it will be defined later.

More precisely,

θi =


∂

∂ui
on Ui,i+1

0 over Uj,j+1, j 6= i

If Oi belongs to the chart (ui, vi)

θi =


∂

∂u′i
on Ui,i+1

0 over Uj,j+1, j 6= i

If Oi belongs to the chart (u′i, v
′
i)

in particular if Oi = Ci ∩ Ci−1

Since θi just moves the blown up point Oi along the curve Ci, all surfaces in these defor-
mations are minimal.
We introduce now n other cocycles which move the blown up point Oi transversaly to the
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exceptional curves Ci. They yield non minimal surfaces, for instance blown up Hopf surfaces
but also surfaces with GSS blown up k times, 1 ≤ k ≤ n.
For i = 0, . . . , n− 1,

µi =


∂

∂vi
on Ui,i+1

0 over Uj,j+1, j 6= i

If Oi belongs to the chart (ui, vi)

µi =


∂

∂v′i
on Ui,i+1

0 over Uj,j+1, j 6= i

If Oi belongs to the chart (u′i, v
′
i)

in particular if Oi = Ci ∩ Ci−1

For any J ⊂ {0, . . . , n−1}, the family ŜJ,σ → B̂J is globally endowed with a family of Enoki
coverings. Using the family of Enoki coverings, all the cocycles θi, µi are globally defined over
ŜM,σ and give global sections

[θi] ∈ H0
(
B̂J , R

1Φ̂J,σ?Θ
)
, [µi] ∈ H0

(
B̂J , R

1Φ̂J,σ?Θ
)
, i = 0, . . . , n− 1

and more precisely for the l indices i such that Oi is generic

[θi] ∈ H0
(
BJ,M , R

1ΦJ,M,σ?(Θ(−Log D)).

For any (a, b) ∈ B̂J , the cocycles [θi(a, b)], [µi(a, b)] ∈ R1Φ?Θ(a,b) ⊗ C = H1(S(a,b),Θ(a,b)),

i = 0, . . . , n−1 are infinitesimal deformations at (a, b) ∈ B̂J associated to the family ŜJ,σ → B̂J .

3.2 Splitting of the space of infinitesimal deformations

We divide minimal deformation in two types of deformations: logarithmic deformations for
which the intersection matrix of the maximal divisor D does not change, in particular the
surfaces remain minimal, and deformations in which the cycle may be smoothed at some singular
points or disappear and surfaces may become non minimal.

Theorem 3. 11 Let S be a minimal surface containing a GSS with b2(S) = n ≥ 1 rational
curves D0, . . . , Dn−1 such that M(S) is negative definite. Let U be a spc neighbourhood of D,
ρ the number of trees in D, rl0 , . . . , rlρ−1

the corresponding regular sequences and

l =

ρ−1∑
i=0

li

the sum of the length of the regular sequences which is also the number of generic blow-ups.
Then we have the exact sequence

(∗) 0→ H1(S,ΘS(− logD))→ H1(S,ΘS)→ H1(U,Θ|U )→ 0.

Moreover

dimH1(S,Θ(− logD)) = l + dimH0(S,ΘS) = 3b2(S)− σn(S) + dimH0(S,ΘS),

dimH1(U,Θ|U ) = 2b2(S)− l = σn(S)− b2(S).

Proof: Consider the exact sequence on S

(z) 0→ ΘS(− logD)→ ΘS → JD → 0
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where

JD := ΘS/ΘS(− logD) =

n−1⊕
i=0

NDi ,

Supp(JD) = D, and NDi the normal bundle of Di. The long exact sequence of cohomology
gives

· · · → H0(D,JD)→ H1(S,ΘS(− logD))→ H1(S,ΘS)→ H1(D,JD)→ H2(S,ΘS(− logD))→ · · ·

If θ ∈ H0(D,JD) its restriction θDi to each curve Di is a section in the normal bundle NDi of
Di. Since D2

i ≤ −2, H0(Di, NDi) = 0, hence θ = 0 and H0(D,JD) = 0. Moreover, by [24],
thm (1.3), H2(S,ΘS(− logD)) = 0, therefore we have

(∗) 0→ H1(S,ΘS(− logD))→ H1(S,ΘS)→ H1(D,JD)→ 0.

We compute now H1(D,JD): the restriction of (z) to U gives

0→ H1(U,ΘU (− logD))→ H1(U,ΘU )→ H1(D,JD)→ 0

since by Siu theorem H2(U,ΘU (− logD)) = 0.
Besides, denoting by C the cycle of rational curves and by H = D − C the sum of trees which
meet C, we have the exact sequence

0→ ΘU (− logD)→ ΘU (− logC)→ JH → 0

where JH := ΘU (− logC)/ΘU (− logD) and Supp(JH) ⊂ H.
By [23] lemma (4.3), H1(U,ΘU (− logC)) = 0, and H0(H,JH) = 0, hence

H1(U,ΘU (− logD)) = 0

With (∗) we conclude.
By [3] (see appendix I), h1(S,Θ(− logD)) = 3b2(S)−σn(S)+h0(S,Θ). Moreover 3b2(S)−σn(S)
is the number of generic blown up points Oi and also is equal to the sum of lengths of regular
sequences. �

3.3 Infinitesimal non logarithmic deformations

We would like to show that θ0, . . . , θn−1, µ0, . . . , µn−1 are generically linearly independent. We
suppose that there exists a linear relation

n−1∑
i=0

(αiθ
i + βiµ

i) = 0.

We choose the curve C0 such that O0 is a generic point but On−1 is the intersection of two
curves. Hence D0 the curve in S induced by C0 is the root of a tree. We shall use this fact
later. We have the following linear system where Xi is a vector field over Ui, i = 0, . . . , n− 1:

(E1)



X0 −Π1?X1 = α0
∂

∂u′′0
+ β0

∂

∂v′′0
on U01 ⊂ U0

...
...

Xi −Πi+1?Xi+1 = αi
∂

∂u′′i
+ βi

∂

∂v′′i
on Ui,i+1 ⊂ Ui

...
...

Xn−2 −Πn−1?Xn−1 = αn−2
∂

∂u′′n−2

+ βn−2
∂

∂v′′n−2

on Un−2,n−1 ⊂ Un−2

Xn−1 − (σΠ0)?X0 = αn−1
∂

∂u′′n−1

+ βn−1
∂

∂v′′n−1

on Un−1,0 ⊂ Un−1
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where, u′′i = ui or u′′i = u′i (resp. v′′i = vi or v′′i = v′i).
We notice that by Hartogs theorem, Xi extends to Wi, hence Xi is tangent to Ci for i =
0, . . . , n− 1; moreover

Π1?X1(O0) = · · · = Πn−1?Xn−1(On−2) = (σΠ0)?X0(On−1) = 0.

Therefore the i-th equation at Oi gives βi = 0.

Remark 3. 12 In fact if we replace the vector field ∂
∂vi

by any non vanishing transversal vector
field, the proof works as well.

Now, we show that if Oi is the intersection point of two curves, then αi = 0. In fact, there
are two cases:

First case Oi = Ci ∩Ci−1: In the (i− 1)-th equation, Xi−1 and ∂
∂ui−1

or ∂
∂u′i−1

are defined

on whole Wi−1, therefore it is the same for Πi?Xi, so Πi?Xi is tangent to Ci−1. As
consequence, Xi is tangent to (the strict transform of) Ci−1 in Wi, thus Xi vanishes at
the intersection point Oi = Ci ∩ Ci−1. We have

Xi(Oi) = Πi+1?Xi+1(Oi) = 0,

hence αi = 0.

Second case Oi = Ci ∩ Ck, k < i − 1: Then we have Ok+1 = Ck+1 ∩ Ck and by the
previous case,

(1) αk+1 = 0, therefore
Xk+1 = Πk+2?Xk+2.

(2) The vector field Xk+1 is tangent to Ck, therefore Xk+2 is tangent to (the strict
transform of) Ck.

If Ok+2 = Ck+2 ∩ Ck, we have

Xk+2(Ok+2) = Πk+3?Xk+3(Ok+2) = 0

and αk+2 = 0; by induction we prove αk+1 = αk+2 = · · · = 0 till the moment Ok+l is not
the point Ck+l ∩ Ck but the point Ck+l ∩ Ck+l−1. However if it happens it means that
we are in the first case.

We have obtained

Theorem 3. 13 The space of non logarithmic infinitesimal deformations H1(U,Θ|U ) is gen-
erated by the 2b2(S)− l cocycles µi, i = 0, . . . , n− 1 and θi for indices i such that Oi is at the
intersection of two curves.

The sequence of blowing-ups splits into subsequences(
Πn1+···+nκ · · ·Πn1+···+nκ+lκ−1

)
◦
(

Πn1+···+nκ+lκ · · ·Πn1+···+nκ+nκ+1−1

)
,

where κ = 0, . . . , ρ − 1. The indices wich correspond to points Oi at the intersection of two
curves are

i = n1 + · · ·+ nκ + lk, . . . , n1 + · · ·+ nκ + nκ+1 − 1,

therefore for κ = 0, . . . , ρ− 1,

αn1+···+nκ+lκ = · · · = αn1+···+nκ+nκ+1−1 = 0.

The equations (E1) become
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(E2)

X0 −Π1?X1 = α0
∂

∂u0
on W0

...
...

Xl0−1 −Πl0?Xl0 = αl0−1
∂

∂ul0−1
on Wl0−1

Xl0 −Πl0+1?Xl0+1 = 0 on Wl0
...

...
Xn1−1 −Πn1?Xn1

= 0 on Wn1−1

...
...

Xn1+···+nκ −Πn1+···+nκ+1?Xn1+···+nκ+1 = αn1+···+nκ
∂

∂un1+···+nκ
on Wn1+···+nκ

...
...

Xn1+···+nκ+lκ−1

−Πn1+···+nκ+lκ?Xn1+···+nκ+lκ = αn1+···+nκ+lκ−1
∂

∂un1+···+nκ+lκ−1

on Wn1+···+nκ+lκ−1

Xn1+···+nκ+lκ

−Πn1+···+nκ+lκ+1?Xn1+···+nκ+lκ+1 = 0 on Wn1+···+nκ+lκ

...
...

Xn1+···+nκ+1−1 −Πn1+···+nκ+1?
Xn1+···+nκ+1

= 0 on Wn1+···+nκ+1−1

...
...

Xn1+···+nρ−1
−Πn1+···+nρ−1+1?

Xn1+···+nρ−1+1 = αn1+···+nρ−1

∂

∂un1+···+nρ−1

on Wn1+···+nρ−1

...
...

Xn1+···+nρ−1+lρ−1−1

−Πn1+···+nρ−1+lρ−1?
Xn1+···+nρ−1+lρ−1

= αn1+···+nρ−1+lρ−1−1
∂

∂un1+···+nρ−1+lρ−1−1

on Wn1+···+nρ−1+lρ−1−1

Xn1+···+nρ−1+lρ−1

−Πn1+···+nρ−1+lρ−1+1?
Xn1+···+nρ−1+lρ−1+1 = 0 on Wn1+···+nρ−1+lρ−1

...
...

Xn1+···+nρ−2 −Πn1+···+nρ−1?
Xn1+···+nρ−1 = 0 on Wn1+···+nρ−2

Xn−1 − (σΠ0)?X0 = 0 on Wn−1

It should be noticed that a block may be reduced to one line, if lκ = nκ+1 − 1, i.e. if there is
in the block only one blowing-up at the intersection of two curves.

For κ = 0, . . . , ρ − 1, the vector fields Xn1+···+nκ+lκ , . . . , Xn1+···+nκ+1−1 glue together into
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a vector field that we shall denote Xn1+···+nκ+lκ . Hence setting

Π′0 = Π0 · · ·Πl0−1, Π′′0 = Πl0 · · ·Πn1−1

...
...

Π′κ = Πn1+···+nκ · · ·Πn1+···+nκ+lκ−1, Π′′κ = Πn1+···+nκ+lκ · · ·Πn1+···+nκ+1−1

...
...

Π′ρ−1 = Πn1+···+nρ−1
· · ·Πn1+···+nρ−1+lρ−1−1, Π′′ρ−1 = Πn1+···+nρ−1+lρ−1

· · ·Πn1+···+nρ−1

Π = Π′0Π′′0 · · ·Π′κΠ′′κ · · ·Π′ρ−1Π′′ρ−1.

we reduce the system to

(E3)

X0 −Π1?X1 = α0
∂

∂u0
on W0

...
...

Xl0−2 −Πl0−1?Xl0−1 = αl0−2
∂

∂ul0−2
on Wl0−2

Xl0−1 −Π′′0?Πn1?Xn1
= αl0−1

∂

∂ul0−1

on Wl0−1 ∪ · · · ∪Wn1−1

...
...

Xn1+···+nκ −Πn1+···+nκ+1?Xn1+···+nκ+1 = αn1+···+nκ
∂

∂un1+···+nκ
on Wn1+···+nκ

...
...

Xn1+···+nκ+lκ−2

−Πn1+···+nκ+lκ−1?Xn1+···+nκ+lκ−1 = αn1+···+nκ+lκ−2
∂

∂un1+···+nκ+lκ−2

on Wn1+···+nκ+lκ−2

Xn1+···+nκ+lκ−1

−Π′′κ?Πn1+···+nκ+1?
Xn1+···+nκ+1

= αn1+···+nκ+lκ−1
∂

∂un1+···+nκ+lκ−1 − 1
on Wn1+···+nκ+lκ−1 ∪ · · · ∪Wn1+···+nκ+1−1

...
...

Xn1+···+nρ−1 −Πn1+···+nρ−1+1?
Xn1+···+nρ−1+1 = αn1+···+nρ−1

∂

∂un1+···+nρ−1

on Wn1+···+nρ−1

...
...

Xn1+···+nρ−1+lρ−1−2

−Πn1+···+nρ−1+lρ−1−1?
Xn1+···+nρ−1+lρ−1−1 = αn1+···+nρ−1+lρ−1−2

∂

∂un1+···+nρ−1+lρ−1−2

on Wn1+···+nρ−1+lρ−1−2

Xn1+···+nρ−1+lρ−1−1 − (Π′′ρ−1σΠ0)?X0 = αn1+···+nρ−1+lρ−1−1
∂

∂un1+···+nρ−1+lρ−1−1

on Wn1+···+nρ−1+lρ−1−1 ∪ · · · ∪Wn−1

When ρ = 1, i.e. there is only one tree, the linear system reduces to
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(E4)



X0 −Π1?X1 = α0
∂

∂u0
over W0

...
...

Xl−2 −Πl−1?Xl−1 = αl−2
∂

∂ul−2
over Wl−2

Xl−1 − (Π′′ ◦ σ ◦Π0)?X0 = αl−1
∂

∂ul−1
over Wl−1 ∪ · · · ∪Wn−1

Corollary 3. 14 A relation among the cocycles [θi] and [µi], i = 0, . . . , n − 1 contains only
[θi] in H1(S,Θ(−Log D)), i.e. indices for which the blown up point Oi is generic.

Corollary 3. 15 ([23]) Let S be a Inoue-Hirzebruch surface with Betti number b2(S) = n ≥ 1,
then the cocycles θi and µi, i = 0, . . . , n − 1 define the versal deformation and the versal
logarithmic deformation is trivial. Moreover an Inoue-Hirzebruch surface S = S0 with two
cycles of rational curves Γ and Γ′ can be deformed into a Hopf surface with two elliptic curves
Γu and Γ′u blown up respectively −Γ2 and −Γ′2 times.

Proof: In the explicit construction of Inoue-Hirzebruch surfaces [6], there is no generic blown
up points and h1(S,Θ) = 2n, hence we have an explicit base of H1(S,Θ) and explicit universal
deformation. It is easy to see that any singular point of a cycle may be smoothed for even as
well odd Inoue-Hirzebruch surface. �

For moduli space of Oeljeklaus-Toma see [25] or section 4 below.

Corollary 3. 16 Fix any J , M , σ and consider a large family ΦJ,σ : SJ,σ → BJ , then the
image of the stratum BJ,M in the Oeljeklaus-Toma moduli space of surfaces with intersection
matrix M contains an open set.

Proof: Any large family degenerates to Inoue-Hirzebruch surfaces and at the point OIH ∈ BJ
corresponding to this Inoue-Hirzebruch surface, the family is versal. The point OIH is in the
closure of any stratum. By openess of the versality it is versal in a neighbourhood hence on an
open set of any stratum. Since the family is generically versal, the image in Oeljeklaus Toma
coarse moduli space contains an open set. �

3.4 Infinitesimal logarithmic deformations

A relation is only possible among infinitesimal logarithmic deformation. In fact it cannot
contain θi when the curve Ci meets two other curves. In order to be readable and to avoid
an overflow of notations, we give a complete proof for surfaces with only one tree and we
postpone it to the appendix. The idea of the computation is to work in the first infinitesimal
neighbourhood of the maximal divisor. Vanishing of other coefficients should imply to work (if
possible) in the successive infinitesimal neighbourhoods.

Proposition 3. 17 Let (S,C0) be a marked surface. If
∑n−1
i=0 αi[θ

i] = 0 is a relation, then
αk = 0 for any index k such that one of the two conditions is fulfilled

• Ok is the intersection of two rational curves,

• Ok is a generic point but Ck meets two other curves.

In particular, if the unique regular sequences rm are reduced to one curve (i.e. m = 1),
{[θi], [µi] | 0 ≤ i ≤ n − 1} (resp. {[θi] | Oi is a generic point}) is an independant family
of H1(S,Θ) (resp. of H1(S,Θ(−LogD))) and a base if there is no non trivial global vector
fields.
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Remark 3. 18 By induction it is possible to show that for any k < r + s− (p+ q), a similar
Cramer system may by defined and that αk = 0. However, it is not possible to achieve the proof
in this way because when k = r+s−(p+q) a new unknown appears. This difficulty is explained
by the fact that in general there is a relation or a class vanishes among the θi’s.

3.5 Existence of relations among the tangent cocycles

In this section we show that the cocycles {θi | Oi is generic} cannot be linearly independant
everywhere, there exist an obstruction.

Lemma 3. 19 Let S be a minimal surface containing a GSS for which n = b2(S) ≥ 2 and
H0(S,Θ) 6= 0 and tr(S) = 0. Let (S,Φ, U) be the versal deformation of S ' S0, and

Z = {u ∈ U | h0(Su,Θu) > 0}, M =

n−1⋂
i=0

Hi = {u ∈ U | Su is minimal}

and
T = {u ∈ U | t(u) = 0},

where t(u) = tr(Su) is the trace of Su. Then

i) Z ∩ (M \ T ) is empty,

ii) codimZ ≥ 2.

Proof: 1) The only minimal surfaces Su with t(u) 6= 0 which admit a non-trivial vector field
are Inoue surfaces with an elliptic curve E such that E2 = −n and for such surfaces we have
K−1 = [E +D], in particular we have also h0(Su,K

−1) 6= 0.
2) Denote by K the relative canonical line bundle. Suppose there exists a sequence of points
(up) in M \ T with

lim
p→∞

up = 0 and h0(Sup ,Θup) 6= 0.

Then h0(Sup ,K
−1
up ) 6= 0 and by Grauert semi-continuity theorem, h0(S0,K

−1
0 ) 6= 0. Therefore

S has, in the same time, non-trivial vector fields and non-trivial sections of −K. However, if
there are topologically trivial line bundles Lλ and Lκ such that,

H0(S,Θ⊗ Lλ) 6= 0, and H0(S,K−1 ⊗ Lκ) 6= 0

the relation between λ and κ is by [9], λ = k(S)κ, with k(S) ≥ 2, therefore it is impossible and
we have i).
3) If the configuration of curves allows the existence of twisted vector fields (see [9]),

θ ∈ H0(Su,Θu ⊗ Lλ(u)),

the holomorphic function λ is non constant on the logarithmic deformation of S. There is a
non-trivial vector field on Su if and only if λ(u) = 1, therefore codimM∩TZ ∩M ∩ T ≥ 1 in
M ∩ T . With i), it shows that codimMZ ∩M ≥ 2 in M and ii) follows. �

Lemma 3. 20 Let (S,C0) be a marked minimal surface containing a GSS of intermediate type
with n = b2(S). Let (SJ,σ,ΦJ,σ, BJ) be a large family of minimal marked surfaces containing
S. Then, there exists a non empty hypersurface TJ,σ such that the family

{θia, µia | 0 ≤ i ≤ n− 1}

is linearly independent in H1(Sa,Θa) if and only if a ∈ BJ \ TJ,σ.
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Proof: Since the family {θia, µia | 0 ≤ i ≤ n− 1} is linearly independant in a neighbourhood of
the Inoue-Hirzebruch surface, there is at most a hypersurface over which there exist relations.
We take E = Θ with

Z = {a ∈ BM,σ | h0(Sa,Θa) 6= 0},

which is at least 2-codimensional by lemma 3.19, and we apply the theorem 6.70 of Appendix
II �

Theorem 3. 21 Let (S,C0) be a minimal marked surface containing a GSS of intermediate
type, with n = b2(S). Let J = I∞(C0) and let ΦJ,σ : SJ,σ → BJ be the family of surfaces with
GSS associated to J and σ. Then, there exists a non empty hypersurface TJ,σ ⊂ B containing
Z = {u ∈ B | h0(Su,Θu) > 0} such that for u ∈ BJ \ TJ,σ,

a) {[θiu], [µiu] | 0 ≤ i ≤ n− 1} is a base of H1(Su,Θu),

b) {[θiu] | Oi is generic} is a base of H1(Su,Θu(−Log Du)).

Moreover

i) If TJ,σ intersects a stratum BJ,M then TJ,σ ∩BJ,M is a hypersurface in BJ,M ,

ii) TJ,σ intersect each stratum BJ,M such that the corresponding surfaces admit twisted vector
fields and Z ∩BJ,M ⊂ TJ,σ,

Proof: At the point a = (ai) where ai = 0 for all i, Sa is a Inoue-Hirzebruch surface. By
Corollary 3.15, the family {[θi], [µi] | 0 ≤ i ≤ n − 1} is a base of H1(Sa,Θa) therefore has the
same property in a neighbourhood. Outside Z, R1Π?Θ is locally free sheaf of rank 2n, therefore
this family is free outside perhaps a hypersurface TJ,σ. At a generic point of a ∈ BJ , Sa is a
Enoki surface. If ai = 0 for exactly one index i ∈ J , we have σn(Sa) = 2n + 1 and for this
configuration of curves there exists twisted vector fields, therefore by lemma 3.20, TJ,σ is not
empty and contains Z. This gives ii).
i) If TJ,σ which is closed, contains a stratum BJ,M it contains smaller strata, in particular the
Inoue-Hirzebruch surface, which is impossible. �

Remark 3. 22 1) It is possible to prove that TJ,σ does not intersect those strata near Inoue-
Hirzebruch surfaces which have only regular sequences r1.
2) We shall see that for σ = Id, any surfaces with only one tree, TJ,σ is a ramification locus of
BJ,σ over the Oeljeklaus-Toma moduli space.

4 Moduli spaces of surfaces with GSS

The goal of this section is to compare the Oeljeklaus-Toma logarithmic families of surfaces with
the strata in large families of surfaces ΦJ,Mσ : SJ,M,σ → BJ,M which have the same intersection
matrix M . In the case of surfaces with only one tree it turns out that we obtain all the surfaces.

4.1 Oeljeklaus-Toma logarithmically versal family

We recall the results of [25] used in the sequel with a small correction described in the remark
4.26.
All surfaces of intermediate type may be obtained from a polynomial germ in the following
normal form obtained by [13] and improved by [25].

(CG) F (z1, z2) = (λz1z
s
2 + P (z2) + cz

sk
k−1

2 , zk2 )

where k, s ∈ Z, k > 1, s > 0, λ ∈ C?,

P (z2) = cjz
j
2 + cj+1z

j+1
2 + · · ·+ csz

s
2
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is a complex polynomial satisfying the conditions

0 < j < k, j ≤ s, cj = 1, c ∈ C, gcd{k,m | cm 6= 0} = 1

with c = 0 whenever sk
k−1 6∈ Z or λ 6= 1.

Lemma 4. 23 ([25],§4) Two polynomial germs F and

F̃ (z1, z2) =
(
λ̃z1z

s̃
2 + P̃ (z2) + c̃z

s̃k̃
k̃−1

2 , zk̃2

)
,

in normal form (CG) are conjugated if and only if there exists ε ∈ C, εk−1 = 1 such that

k̃ = k, s̃ = s, λ̃ = εsλ, P̃ (z2) = ε−jP (εz2), c̃ = ε
sk
k−1 c.

Intermediate surfaces admitting a global non-trivial twisted vector field or a non-trivial
section of the anticanonical line bundle are exactly those for which (k− 1) | s. When moreover
λ = 1 we have a non-trivial global vector field.

Definition 4. 24 Let S be a surface containing a GSS. The least integer µ ≥ 1 such that there
exists κ ∈ C? for which

H0(S,K−µS ⊗ Lκ) 6= 0

is called the index of S.

If S is defined by the polynomial germ

(CG) F (z1, z2) = (λz1z
s
2 + P (z2) + cz

sk
k−1

2 , zk2 )

then by [25] Remark 4.5,

index(S) := µ =
k − 1

gcd(k − 1, s)
.

Notice that these germs show the existence of a foliation whose leaves are defined by {z2 =
constant}, however they are not birational.
The set of polynomial germs

F (z1, z2) = (λz1z
s
2 + P (z2), zk2 )

with c = 0 are called in pure normal form.

Definition 4. 25 ([25] Def 4.7) For fixed k and s and for a polynomial germ

(CG) F (z1, z2) = (λz1z
s
2 + P (z2) + cz

sk
k−1

2 , zk2 )

we define inductively the following finite sequences of integers

j =: m1 < · · · < mρ ≤ s, and k > i1 > i2 > · · · > iρ = 1,

by:

(i) m1 := j, i1 := gcd(k,m1),

(ii) mα := min
{
m > mα−1 | cm 6= 0, gcd(iα−1,m) < iα−1

}
, iα = gcd(k,m1, . . . ,mα) =

gcd(iα−1,mα),

(iii) 1 = iρ := gcd(k,m1, . . . ,mρ−1,mρ) < gcd(k,m1, . . . ,mρ−1).

We call (m1, . . . ,mρ) the type of F and ρ the length of the type. If ρ = 1, we say that F
is simple.
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By [25], §6, the length of the type is exactly the number ρ of trees previously introduced.

Remark 4. 26 1) If the length is ρ = 1, then gcd(k, j) = 1 and there is no extra condition
on the coefficients cj+1, . . . , cs, therefore the parameter space of polynomial germs in pure form
with integers k, s and type j is

Uk,s,j = C? × Cs−j .

If the length of the type is ρ ≥ 2, notice that by definition, we have cmα ∈ C?, α = 1, . . . , ρ,
and cm1

= cj = 1, however between cmα and cmα+1
, the coefficients

cmα+iα , cmα+2iα , . . . , cmα+
[
mα+1−mα

iα

]
iα
∈ C

may take any value, but all the other coefficients from cmα+1 to cmα+1−1 should vanish. Let

ε(k, s,m1, . . . ,mρ) :=

ρ−1∑
α=1

[
mα+1 −mα

iα

]
+ t−mρ

then the parameter space of all the germs F with the same integers s, k and of the same type
(m1, . . . ,mρ) in pure form are parameterized by

(C?)ρ × Cε(k,s,m1,...,mρ).

There exists a family of surfaces

Sk,s,m1,...,mρ → (C?)ρ × Cε(k,s,m1,...,mρ)

such that for every u ∈ (C?)ρ × Cε(k,s,m1,...,mρ), Su is associated to the germ Fu. We have

Theorem and Definition 4. 27 ([25], thm 7.13) With the above notations we have:

• If k − 1 does not divide s, the family

Sk,s,m1,...,ms
→ (C?)ρ × Cε(k,s,m1,...,mρ) =: Uk,s,m1,...,mρ

is logarithmically versal at every point and contains all surfaces with parameters s, k and
type (m1, . . . ,mρ).

• If k − 1 divides s, the family

Sk,s,m1,...,mρ → (C?)ρ × Cε(k,s,m1,...,mρ) × C =: Uk,s,m1,...,mρ

• is logarithmically complete at every point,

• is logarithmically versal at every point of

Uλ=1
k,s,m1,...,mρ := (C?)ρ−1 × Cε(k,s,m1,...,mρ) × C

and its restriction
Sk,s,m1,...,mρ → Uλ=1

k,s,m1,...,mρ

contains all surfaces with parameters s, k and type (m1, . . . ,mρ) admitting a non-
trivial global vector field,

Moreover its restrition

Sk,s,m1,...,mρ → C \ {0, 1} × (C?)ρ−1 × Cε(k,s,m1,...,mρ) := Uλ 6=1,c=0
k,s,m1,...,mρ

is logarithmically versal at every point and contains all surfaces with parameters k, s and
type (m1, . . . ,mρ) without non-trivial global vector fields.
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We shall call this family the Oeljeklaus-Toma logarithmic family of parameters k, s
and type (m1, . . . ,mρ).

By lemma (23), for fixed k, s and type (m1, . . . ,mρ), Z/(k−1) acts on the germs in pure normal
form. By [25] (7.14),

• Mk,s,m1,...,mρ := Uk,s,m1,...,mρ/
(
Z/(k − 1)

)
if k − 1 does not divide s,

•


Mλ 6=1,c=0

k,s,m1,...,mρ
:= Uλ 6=1,c=0

k,s,m1,...,mρ
/
(
Z/(k − 1)

)
Mλ=1

k,s,m1,...,mρ
:= Uλ=1

k,s,m1,...,mρ
/
(
Z/(k − 1)

)
,

if k − 1 divides s,

are coarse moduli spaces, moreover the canonical mappings are ramified covering spaces. By
lemma 4.23, the ramification set is the union Tk,s,m1,...,mρ (resp. Tλ6=1,c=0

k,s,m1,...,mρ
, Tλ=1

k,s,m1,...,mρ
) of

hypersurfaces {ci = 0}, with j + 1 ≤ i ≤ s such that ci ∈ C, in particular

Uk,s,m1,...,mρ \ Tk,s,m1,...,mρ →Mk,s,m1,...,mρ

Uλ6=1,c=0
k,s,m1,...,mρ

\ Tλ6=1,c=0
k,s,m1,...,mρ

→Mλ 6=1,c=0
k,s,m1,...,mρ

Uλ=1
k,s,m1,...,mρ \ T

λ=1
k,s,m1,...,mρ →M

λ=1
k,s,m1,...,mρ

are non ramified covering spaces having k − 1 sheets.

Remark 4. 28 When k−1 divides s, all the surfaces over the fiber (λ, a, b)×C with (λ, a, b) ∈
C \ {0, 1} × (C?)ρ−1 × Cε(k,s,m1,...,mρ) are isomorphic. Moreover

Uλ=1
k,s,m1,...,mρ/

(
Z/(k − 1)

)
∪ Uλ6=1,c=0

k,s,m1,...,mρ
/
(
Z/(k − 1)

)
is not separated. In fact, denote by

Fλ,c(z1, z2) = (λz1z
s
2 + P (z2) + cz

sk
k−1

2 , zk2 ).

Then any neighbourhood of F1,c with c 6= 0 meets any neighbourhood of F1,0 because if λ 6= 1,

Fλ,c ∼ Fλ,0.

Proposition and Definition 4. 29 If k − 1 divides s, the restriction

S0
k,s,m1,...,mρ → (C?)ρ × Cε(k,s,m1,...,mρ) := U c=0

k,s,m1,...,mρ

of the family
Sk,s,m1,...,mρ → (C?)ρ × Cε(k,s,m1,...,mρ) × C := Uk,s,m1,...,mρ

will be called the Oeljeklaus-Toma family of pure surfaces. It is versal at every point of

C \ {0, 1} × (C?)ρ−1 × Cε(k,s,m1,...,mρ)

and effective at every point of

{1} × (C?)ρ−1 × Cε(k,s,m1,...,mρ).

Since the hypersurface (C?)ρ ×Cε(k,s,m1,...,mρ) × {0} is invariant under the action of Z/(k− 1)
by (23), the projection

pr : (C?)ρ × Cε(k,s,m1,...,mρ) × C→ (C?)ρ × Cε(k,s,m1,...,mρ) × {0}

induces a holomorphic mapping

p : (C?)ρ × Cε(k,s,m1,...,mρ) × C/
(
Z/(k − 1)

)
→ (C?)ρ × Cε(k,s,m1,...,mρ) × {0}/

(
Z/(k − 1)

)
.
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4.2 The generically logarithmically versal family SJ,M,σ

Notice that by [25]§6, k, t and the integers (m1, . . . ,mρ) determine completely the sequence of
self-intersections of the rationals curves, i.e. the invariant σn(S) and the intersection matrix
M = M(S). We have two families of logarithmic deformations, the first one

SJ,M,σ → BJ,M = (C? × Cl0−1)× · · · × (C? × Clκ−1)× · · · × (C? × Clρ−1−1),

is generically versal by (3.21), the second one

Sk,σ,m1,...,mρ → Uk,σ,m1,...,mρ = C?λ × (C?)ρ−1 × Cε(k,σ,m1,...,mρ)

is versal at every point, therefore

dimBJ,M = dim(C?)ρ × Cε(k,σ,m1,...,mρ),

l = ρ+ ε(k, σ,m1, . . . ,mρ),

and the bases are equal up to permutation of the factors.

Lemma 4. 30 Let (ga)a∈BJ be a differentiable family of Gauduchon metrics on ΦJ,σ : SJ,σ →
BJ , ωa be its associated (1, 1) form and let

degga : H1(Sa,O?)→ R, degga(L) =

∫
Sa

c1(L) ∧ ωa

be the degree of a line bundle. Then there is a non vanishing differentiable negative function

C : BJ → R?−

such that for any Lλ ∈ H1(Sa,C?) ' C?,

degga(Lλ) = C(a) log |λ|.

Proof: For any a ∈ BJ the Lie group morphism degga : H1(Sa,C?) ' C? → R has the form

degga(Lλ) = C log |λ| where C 6= 0 since this morphism is surjective. Besides the family of
Gauduchon metric depends differentiably on a ∈ BJ ,therefore C : BJ → R is always positive
or always negative. Now, on Enoki surfaces Sa, denote by Γa the topologically trivial cycle of
rational curves. Then, by Gauduchon theorem [14], [22], and [9]

vol(Γa) = degga([Γa]) = degga(Lt(a)) = C(a) log |t(a)|

where t(a) = tr (Sa) is the trace of the surface satisfies 0 < |t(a)| < 1, therefore C(a) < 0. Since
C(a) < 0 when Sa is a Enoki surface, C(a) < 0 everywhere. �

Remark that a numerically Q-anticanonical divisor D−K on a surface S is a solution of a
linear system whose matrix is the intersection matrix M = M(S) of S. Therefore the index is
the least integer m such that mD−K is a divisor and this integer is fixed on any logarithmic
family ΦJ,M,σ : SJ,M,σ → BJ,M .

Lemma 4. 31 Let F (z1, z2) = (λz1z
s
2 + P (z2) + cz

sk
k−1

2 , zk2 ) be a Favre contracting germ as-
sociated to a surface of intermediate type S. Let µ = index(S) ∈ N? and κ ∈ C? such that
H0(S,K⊗−µS ⊗ Lκ) 6= 0. Then

κ = k(S)−µλ−µ.
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Proof: A global section θ ∈ H0(S,K−µ⊗Lκ) induces a germ θ = zα2A(z)
(

∂
∂z1
∧ ∂
∂z2

)⊗µ
which

satisfies the condition

θ(F (z)) = κ
(

detDF (z)
)µ
θ(z),

where α is the vanishing order of θ along Cn−1 and A(0) 6= 0. Since detDF (z) = λkzs+k−1
2 ,

comparison of lower degree terms gives

zkαA(0) = κ(λk)µz
µ(s+k−1)+α
2 A(0)

hence  α(k − 1) = µ(k − 1 + s)

κ = k(S)−µλ−µ.

�

Lemma 4. 32 Let S be a minimal complex surface, µ the index of S and κ such that H0(S,K⊗−µ⊗
Lκ) 6= 0. Then a section of K⊗−µ ⊗ Lκ vanishes on all the rational curves in S.

Proof: Let Di, i = 0, . . . , n− 1 be the n rational curves in S and suppose that

K⊗−µ ⊗ Lκ =

n−1∑
i=0

kiDi.

We have ki ≥ 0 for all i = 0, . . . , n − 1; if one coefficient vanishes, say k0 = 0, on one hand,
since the maximal divisor is connected,

c1(K⊗−µ ⊗ Lκ).D0 =

n−1∑
i=1

kiDiD0 > 0

and on second hand, by adjunction formula

c1(K⊗−µ ⊗ Lκ).D0 = −µc1(K).D0 = µ(D2
0 + 2) ≤ 0

we obtain a contradiction. �

Proposition 4. 33 Let ΦJ,M,σ : SJ,M,σ → BJ,M be a logarithmic family of marked intermedi-
ate surfaces with J 6= ∅ and µ the common index of the surfaces. Then
1) there exists a unique surjective holomorphic function

κ = κJ,M,σ : BJ,M → C?
a 7→ κ(a)

such that H0(Sa,K
−µ
Sa
⊗ Lκ(a)) 6= 0.

2) If the surfaces admit twisted vector fields there exists a unique surjective holomorphic function

λ = λJ,M,σ : BJ,M → C?
a 7→ λ(a)

such that the marked surface (Sa, C0,a) is defined by a germ of the form

Fa(z1, z2) = (λ(a)z1z
s
2 + Pa(z2), zk2 ).

3) The fibers Kα := {κ = α} (resp. Λα := {λ = α}), α ∈ C?, are closed in BJ hence analytic
in BJ ⊃ BJ,M .
4) Let BJ,M ⊂ BJ be the closure of BJ,M in BJ , i.e. the union of BJ,M with the smaller strata,
then κJ,M,σ extends holomorphically to κJ,σ : BJ,M → C and κ−1

J,σ(0) = BJ,M \BJ,M .
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Proof: 1) For a ∈ BJ,M , the complex number κ(a) satisfies h0(Sa,K
−µ
Sa
⊗ Lκ(a)) = 1. It is

unique because there is no topologically trivial divisor.
We consider a new base space BJ,M × C?, and let

pr1 : BJ,M × C? → BJ,M ,

be the first projection. Let K → SJ,M,σ be the relative canonical line bundle and L → SJ,M,σ×
C? be the tautological line bundle such that La,τ is the line bundle Lτ over Sa. We consider
the family of rank one vector bundles

pr?1K ⊗ L → pr?1SJ,M,σ
pr?1ΦJ,M,σ−→ BJ,M × C?.

Then (pr?1K ⊗ L)(a,α) = Ka ⊗ Lα. The set of points

Z = {(a, α) ∈ BJ,M × C? | h0(Sa,Ka ⊗ Lα) > 0}

is an analytic subset. Let
pr : Z → BJ,M

be the restriction to Z of the first projection pr1 over BJ,M . Then pr is surjective by hypothesis.
Each fiber contains only one point. Moreover pr is proper: in fact we consider the closure
Z ⊂ BJ,M × P1(C). By Remmert-Stein theorem, either Z is an analytic set in BJ,M × P1(C)
or contains at least one of the hypersurfaces BJ,M × {0} or BJ,M × {∞}. But it is impossible
because each fiber contains only one point. Therefore Z is analytic and pr : Z → BJ,M is
proper hence a ramified covering. Since there is only one sheet, it is the graph of a holomorphic
mapping κ : BJ,M → P1(C). Since for every a ∈ BJ,M , pr−1(a) contains exactly one point in
C?, κ has only values in C?.
Now, κ cannot be constant because κ = (kλ)−µ and λ is a parameter of a logarithmic versal
family, therefore the non-constant mapping κ : (C?)ρ × Cl−ρ → C? is surjective.
2) By lemma 4.31, κ = k−1λ−1.
3) Consider the hypersurface {κ = α} ⊂ BJ,M for α ∈ C?. The closure BJ,M of BJ,M in BJ is
the union of BJ,M with lower strata, hence BJ,M \BJ,M is also a hypersurface. Remmert-Stein

theorem shows that {κ = α} is analytic or contains an irreducible component of BJ,M \BJ,M .
However the second possibility is excluded by Grauert semi-continuity theorem because on a
whole stratum we would have H0(Sa,K

−µ ⊗Lα) 6= 0 which is impossible because the twisting
parameter is not constant. Therefore the slice has an extension. If {κ = α} ∩ (BJ,M \BJ,M ) 6=
∅, the line bundle K−µ ⊗ Lα has a section over SJ,σ |{κ=α} hence the zero locus which is

the union of all the rational curves by [9] would be is a flat family of divisors; however it
is impossible because the configuration changes contradicting flatness (it can be seen that
the curve whose self-intersection decreases has a volume which tends to infinity (see [12])).
Therefore {κ = α} ∩ (BJ \BJ,M ) = ∅ and each slice is already closed in BJ,M .
4) Since the fibers Kα are closed in BJ ,

lim
a→BJ,M\BJ,M

κJ,M,σ(a) = 0 or ∞.

Let K be the relative canonical line bundle, θ ∈ H0(SJ,M,σ,K−µ ⊗ Lκ) be the flat family of
sections over BJ,M and Z the associated divisor of zeroes of θ. By lemma 4.30,

vol(Za) = degga([Za]) = degga(K−µa ⊗ Lκ(a)) = −µdegga(Ka) + C(a) log |κ(a)|

Since a 7→ degga(Ka) is differentiable, hence bounded, and vol(Za) > 0, the limit of κ =

κJ,M,σ(a) near BJ,M \BJ,M cannot be∞, therefore κ extends continuously and holomorphically.
�
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Remark 4. 34 1) If index(S) = 1, we have λ−1 = k(S)κ, i.e. the invariant used here is the
inverse of the invariant λ = λ(S) in [9].
2) If index(S) 6= 1, λ(a) is defined up to a (k − 1)-root of unity.

Lemma 4. 35 Let S be a surface with GSS such that the dual graph of the curves admits
exactly one tree. We choose the numbering such that the first blowing-ups are non generic and
the last l ≥ 1 ones generic. More precisely

• O0 ∈ C0 is the origin of the chart (u′0, v
′
0), hence Π0(u′0, v

′
0) = (v′0, u

′
0v
′
0)

• Oi ∈ Ci is the origin of the chart (ui, vi) or (u′i, v
′
i) for i = 1, . . . , n− l − 1,

• On−l = (an−l, 0) ∈ Cn−l with an−l ∈ C?, Πn−l(un−l, vn−l) = (un−lvn−l, vn−l),

• Oi = (ai, 0) ∈ Ci, i = n− l + 1, . . . , n− 1 is in the chart (ui, vi) and

Πi(ui, vi) = (uivi + ai−1, vi).

)2;z{1na+2»z+1z(

)2;z1z=(
0);{1na(

0);l{na(

{1nU

l{nU
{1l{nU

0U )'v';u'v()';v'u(

{1n¦

+1l{n¦

l{n¦

{1l{n¦

1¦

¾0¦

We suppose that with this choice (the induced curve by Cn−l is the root of the tree), σ is a
polynomial isomorphism of the special form

σ(z1, z2) = (σ1(z) + an−1, σ2(z)) = (z1 + ξzu2 + an−1, z2), u ≥ 1.

Let µ = index(X) be the index of S. Then on the corresponding base BJ,M of the family
ΦJ,M,σ : SJ,M,σ → BJ,M , the holomorphic function

κ = κJ,M,σ : C? → C?

such that H0(Sa,K
−µ
Sa
⊗Lκ(a)) 6= 0 is a monomial holomorphic function of an−l, where On−l =

(an−l, 0). More precisely, if δ = ps− qr and σ = p+ q + l − 1,

κJ,M,σ(an−l) = δµa
µ[ rσ
r+s−1−p+1]

n−l , µ

[
rσ

r + s− 1
− p+ 1

]
∈ N?.

28



Proof: Let κ := κJ,M,σ be the holomorphic function given by the proposition 4.33. We have

Πn−l · · ·Πn−1σ(z) =
(

(z1 + ξzu2 + an−1)zl2 +

n−2∑
i=n−l

aiz
l−n+i+1
2 , z2

)

=
(
z1z

l
2 + ξzl+u2 +

n−1∑
i=n−l

aiz
l−n+i+1
2 , z2

)
Π0 · · ·Πn−l−1(u′′, v′′) = (u′′

p
v′′
q
, u′′

r
v′′
s
),

with

(u′′, v′′) = (un−l−1, vn−l−1) or (u′′, v′′) = (u′n−l−1, v
′
n−l−1), p ≤ r, q ≤ s, p+ q < r + s.

Combining these two expressions and using the special form of σ, the expression of F is

F (z) = Πσ =

((
z1z

l
2 + ξzl+u2 +

n−1∑
i=n−l

aiz
l−n+i+1
2

)p
zq2 ,
(
z1z

l
2 + ξzl+u2 +

n−1∑
i=n−l

aiz
l−n+i+1
2

)r
zs2

)
,

with an−l 6= 0.
Setting 

( )
:=
(
z1z

l
2 + ξzl+u2 +

n−1∑
i=n−l

aiz
l−n+i+1
2

)
and

[ ]
:=

∂

∂z2

( )
= lz1z

l−1
2 + ξ(l + u)zl+u−1

2 +

n−1∑
i=n−l

ai(l − n+ i+ 1)zl−n+i
2

DF (z) =


p
( )p−1

zl+q2 p
( )p−1[ ]

zq2 +
( )p

qzq−1
2

r
( )r−1

zl+s2 r
( )r−1[ ]

zs2 +
( )r

szs−1
2


and

detDF (z) = (ps− qr)
( )p+r−1

zl+q+s−1
2 .

Let θ ∈ H0(S,K−µS ⊗Lκ), then there exists an invariant germ in a neighbourhood of the origin
of the ball still denoted by θ which vanishes on the curves

θ(z) = zα2A(z)

(
∂

∂z1
∧ ∂

∂z1

)⊗µ
such that A(0) 6= 0. This germ satisfies the condition

θ(F (z)) = κ
(
detDF (z)

)µ
θ(z),

which is equivalent to( )αr
zαs2 A(F (z)) = κ(ps− qr)µ

( )µ(p+r−1)

z
µ(l+q+s−1)+α
2 A(z)

where δ := ps− qr = ±1. Considering the homogeneous part of lower degree of each member,
we obtain

(1) α(r + s− 1) = µ(p+ q + l − 1 + r + s− 1) = µ(σ + r + s− 1)
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(2). κ = (ps− qr)µaαr−µ(p+r−1)
n−l

By proposition 4.8 3), κ vanishes on smaller strata, therefore αr− µ(p+ r− 1) > 0. We derive
the value of κ from (1) and (2). �

Remark that any F = Πσ with ρ trees splits into ρ contracting germs

F = (Π0 · · ·Πi1−1)(Πi1 · · ·Πi2−1) · · · (Πiρ−1
· · ·Πn−1σ)

If we decompose trivially Πij into σjΠ
′
ij

, j = 1, . . . , ρ− 1, σρ = σ with

Π′ij (u
′
ij , v

′
ij ) = (v′ij , u

′
ijv
′
ij ) = (z1, z2), σj(z1, z2) = (z1, z2) = (uij−1, vij−1)

we have the decomposition
F =: F0 ◦ · · · ◦ Fj ◦ · · · ◦ Fρ−1,

with Fj := Π′ijΠij+1 · · ·Πij+1−1σj+1, such that each germ Fj is the germ of a marked surface
Sj with one tree which satisfies the conditions of lemma 4.35. Notice that there is a unique
index kj , ij + 1 ≤ kj ≤ ij+1 − 1 such that Ckj meets two other curves.

Proposition 4. 36 Let F = Πσ = F0 ◦ · · · ◦ Fρ−1 where each Fi satisfies the conditions of
lemma 4.35. Let µ = index(S) ∈ N? and κ ∈ C? such that H0(S,K−µS ⊗ Lκ) 6= 0. Then κ
depends only on the coordinates ai ∈ C? of the generic blown up points Oi = (ai, 0) ∈ Ci such
that Ci meets two other curves (i.e. is the root of a tree). More precisely there is a surjective
monomial function of the variables akj ∈ C?, j = 0, . . . , ρ− 1

κ = κJ,M,σ : BJ,M → C?

such that

• For a ∈ BJ,M ,

H0(Sa,K
−µ
Sa
⊗ LκJ,M,σ(a)) 6= 0

• κJ,M,σ extends holomorphically to κJ,σ : BJ,M → C such κ−1
J,σ(0) = BJ,M \BJ,M .

Proof: The integer µ depends only on the intersection matrix M , hence is constant on BJ,M .
The complex number κ depends only on the isomorphism class of the surface, hence does not
depend on the choice of the germ. Let F be the chosen germ and G a Favre germ in the
conjugation class of F . The germ G(z) = (λz1z

m
2 + · · · , zk2 ) has a unique Oeljeklaus-Toma

decomposition (see [25] Prop. 5.10)

G = G0 ◦ · · · ◦Gj ◦ · · · ◦Gρ−1, Gj(z) = (λjz1z
mj
2 + · · · , zkj2 ).

The invariants k and λ are multiplicative, therefore

k = k(S) =

ρ−1∏
j=0

kj , λ =

ρ−1∏
j=0

λj ,

By lemma 4.35,

κj = δ
µj
j a

µj(rjlj+pj+sj−δj−1)

rj+sj−1

kj
, with

µj(rj lj + pj + sj − δj − 1)

rj + sj − 1
∈ N?
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and by lemma 4.31,
κj = k

−µj
j λ

−µj
j .

κ = k(S)−µλ−µ =

ρ−1∏
j=0

kj

−µρ−1∏
j=0

λj

−µ =

ρ−1∏
j=0

kjλj

−µ .
Setting µ′ =

∏ρ−1
j=0 µj , we have,

κµ
′

=

ρ−1∏
j=0

(
κ
µ′/µj
j

)µ
=

ρ−1∏
j=0

(
δ
µ′/µj
j a

µ′(rjlj+pj+sj−δj−1)

rj+sj−1

kj

)µ
.

is a monomial function of the variables akj therefore (κµ
′
)−1(0) = BJ,M \BJ,M . Moreover

lim
a→BJ,M\BJ,M

κ(a) = 0,

We conclude by Riemann theorem that κ is a holomorphic function on BJ,M . A power is
monomial, therefore κ is itself monomial and

µ(rj lj + pj + sj − δj − 1)

rj + sj − 1
∈ N?.

�

4.3 Surfaces with b2 = 2.

4.3.1 Rational curves

Up to a circular permutation intersection matrix and configuration of the curves D0 and D1

are the following:

• Surfaces of trace t 6= 0: Enoki surfaces and Inoue surfaces,

M(S) =

(
−2 2

2 −2

)
, [D0] = e0 − e1, [D1] = e1 − e0, [D0] + [D1] = 0.

{2

{2

• Intermediate surface

M(S) =

(
−1 1

1 −2

)
, [D0] = e0 − e1 − e0 = −e1, [D1] = e1 − e0.

{2

{1
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• Inoue-Hirzebruch surfaces

M(S) =

(
−4 2

2 −2

)
, [D0] = e0−e1−e0−e1 = −2e1, [D1] = e1−e0, [D0]+[D1] = −e0,

M(S) =

(
−1 0

0 −1

)
, [D0] = e0 − e1 − e0 = −e1, [D1] = e1 − e0 − e1 = −e0.

{2

{4
{1 {1

4.3.2 Intermediate surfaces

We consider intermediate surfaces S, since the problem of normal forms is solved for the other
cases. There are two curves: one rational curve with a double point D2

1 = −1 with one tree
D2

0 = −2, D0D1 = 1. Favre polynomial germs are

Fc(z1, z2) = (λz1z2 + z2 + cz2
2 , z

2
2)

where k = k(S) = 2, s = 1. Invariant vector fields θ exist if and only if λ = 1 in which case

θ(z) = αz
s/(k−1)
2

∂

∂z1
= αz2

∂

∂z1
, α ∈ C

Intermediate surfaces belong to three families, namely for J = {0}, J = {1} and J = {0, 1}.
Case J = {0}
The case J = {1} is similar.
The family of germs defining surfaces of ΦJ,M,σ : SJ,M,σ → BJ,M are

GJa (z1, z2) = Ga(z1, z2) =
(
z2, (z1 + a1)z2

2

)
, a1 ∈ C?, a = (0, a1)

)2
2z)1a+1z (; 2z)=(2;z1z(¾1¦0)=¦2;z1z(aG

)2;z1a+1z)=(z(¾

1C

0
{2C

1
{2C

g=02zf=1C

1
{1C

0
{1C

)'v';u'v(

)';v'u(

)uv;v(

)u;v(

0¦

1¦

0);1a(

32



A germ of isomorphism ϕ which conjugates Ga and Ga′ leaves the line {z2 = 0} invariant,
therefore ϕ has the form ϕ(z) = (ϕ1(z), Bz2(1 + θ(z)). A simple computation shows that if Ga
and Ga′ are conjugated then

a1 = ±a′1.

Besides if we want to determine the twisting parameter κ such that H0(S,K−1 ⊗ Lκ) 6= 0, we
have to solve the equation

µ(Ga(z)) = κdetDGa(z)µ(z).

Using the relation D−K = Dθ + D of [9] or by a direct computation, we know that a section
µ of the twisted anticanonical bundle has to vanish at order two along the cycle, i.e. along
{z2 = 0}, therefore µ(z) = z2

2A(z) ∂
∂z1
∧ ∂
∂z2

where A(0) 6= 0. A straightforward computation or
lemma 4.35 shows that

κ = −a2
1.

By [9] the relation between the twisting parameters κ and λ̃ chosen so that H0(S,Θ⊗Lλ̃) 6= 0,

is λ̃ = kκ. Here k = k(S) = 2, therefore λ̃ = −2a2
1 and

• There is a non-trivial global global vector field if and only if λ̃ = 1 if and only if

a2
1 = −1

2

• Since λ = 1/λ̃ ∈ C? is a parameter of the coarse moduli space, Ga is conjugated to Ga′

if and only if the corresponding surfaces S(Ga) and S(Ga′) are isomorphic if and only if
a2

1 = a′21 . In particular the mapping C? = BJ,M → B2,1,1 = C? is 2-sheeted non ramified
covering space

We are now looking for the missing parameter: we choose σ(z) = (z1 + ξz2 + a1, z2); the
infinitesimal deformation is

X(u1, v1) = v1
∂

∂u1
.

With
Ga,ξ(z1, z2) =

(
z2, (z1 + ξz2 + a1)z2

2

)
the same computation gives κ = −a2

1. With a fixed such that a2
1 = −1/2 (in order to have a

global vector field), the conjugation relation

ϕ(Ga,ξ(z)) = Fc(ϕ(z))

yields the relations
(I) ϕ1

(
z2, (z1 + ξz2 + a1)z2

2

)
= Bz2

[
(1 + ϕ1(z))(1 + θ(z)) + cBz2(1 + θ(z))2

]
(II) (z1 + ξz2 + a1)

(
1 + θ

(
z2, (z1 + ξz2 + a1)z2

2

))
= B(1 + θ(z))2

we compare the homogeneous parts of the same degree

• till degree two and homogeneous part z1z
2
2 in (I)

• till degree one and homogeneous part z2
1 in (II)

A straightforward computation with a2
1 = −1/2 yields

c = ξ + 2.

Therefore all surfaces with global vector fields are obtained when ξ moves in C, and X acts
by translation. In particular when b2(S) = 2, all surfaces are obtained by simple birational

33



mappings obtained by composition of blowing-ups and an affine map at a suitable place.
We extend the family to Enoki surfaces. The family of marked surfaces ΦJ,σ : SJ,σ → BJ is
defined by the family of polynomial germs

Ga(z1, z2) =
(
z2, z

2
2(z1 + a1) + a0z2

)
, a = (a0, a1)

We have
tr (S) = trDGa(0) = a0

therefore |a0| < 1. The open set BJ = ∆a0 × Ca1 has the following strata

2
||
2i

{ 
2
||
2i

Enoki surfaces

4);(2IH surface  
3);(2intermediate surface    

0);(0
0a

¢
1a

C

Notice that for ϕ(z1, z2) = (−z1,−z2),

ϕ ◦G(a0,a1) ◦ ϕ−1 = G(a0,−a1),

therefore there is an involution

i : BJ → BJ , i(a0, a1) = (a0,−a1),

such that Ga and Gi(a) give isomorphic surfaces.
Moreover there is also the hypersurface TJ,σ where there is a relation. The sheaf of relations is
generated by global section by theorem A of Cartan. Let

α0(a)[θ0] + β0(a)[µ0] + α1(a)[θ1] + β1(a)[µ1] = 0

be such a relation. By the same computation as at the beginning of section 3.3,

β0 = β1 = 0,

therefore we have to solve the system
X0 −Π1?X1 = α0

∂

∂u0
at the point Π1(u1, v1)

X1 − σ?Π0?X0 = α1
∂

∂u′1
at the point σΠ0(u′0, v

′
0)

We have

DΠ1(u1, v1) =

(
v1 u1

0 1

)
, D(σΠ0)(u′0, v

′
0) =

(
0 1
v′0 u′0

)
,

Since by Hartogs theorem the vector fields X0 and X1 extend on the whole blown up ball, they
are tangent to the exceptional curves and we set

X0 = A0
∂

∂u′0
+ v′0B0

∂

∂v0
, X1 = A1

∂

∂u1
+ v1B1

∂

∂v1
,

By a straightforward computation similar to those in the appendix we derive that

α0(a0, a1) = 0,
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for all minimal surfaces, therefore [θ0] 6= 0 on ∆a0
×Ca1

(recall that tr(Sa) = a0 and the trace
is a holomorphic invariant) .
By proposition 3.17, the four cocycles are independent on the line {a0 = 0}, hence α1(0, a1) = 0,
and the relation reduces to

α1(a)[θ1] = 0

with α1(0, a1) = 0. Therefore TJ,σ ∩{a0 = 0} = {(0,± i
√

2
2 )}, [θ1] = 0 along TJ,σ \ {a0 = 0} but

[θ1] 6= 0 at the two points where Θ is not locally free. The mapping from the stratum of Enoki
surface to the moduli space of Enoki surfaces is discrete and ramified along TJ,σ and {a1 = 0}.

Case J = {0, 1}
With σ(z) = (z1 + a1, z2), the family of marked surfaces ΦJ,σ : SJ,σ → BJ is associated to the
family of polynomial germs

GJa (z1, z2) = Ga(z1, z2) =
(
z2(z1 + a1), z2(z1 + a1)(z2 + a0)

)
detDGa(z1, z2) = z2

2(z1 + a1),

tr (Sa) = trDGa(0) = a0a1, with |a0a1| < 1.

There are two lines of intermediate surfaces which meet at the Inoue-Hirzebruch surface with
two singular rational curves.

2);(3intermediate   

3);(2intermediate    

3);(3IH  

Enoki surfaces

• For a0 = 0, a1 6= 0, κ = a1,

• For a1 = 0, a0 6= 0, κ = a0.

The involution of the Inoue-Hirzebruch surface which swaps the two cycles induces on the base
of the versal family swapping of the two lines of intermediate surfaces.
We have obtained

Theorem 4. 37 Let F = Πσ : (C2, 0) → (C2, 0) be any holomorphic germ, where Π = Π0Π1

are blowing-ups and σ is any germ of isomorphism. Then F is conjugated to a birational map
obtained by the composition of two blowing-ups

(u, v) 7→ (uv + a, v), (u′, v′) 7→ (v′, u′v′),

and an affine map at a suitable place. If moreover, S is of intermediate type and there is no
non-trivial invariant vector field, F is conjugated to the composition of two blowing-ups of the
previous types.

Corollary 4. 38 Any minimal surface with b1(S) = 1 and b2 ≤ 2 containing a GSS admits a
birational structure.
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5 Birational germs and new normal forms

5.1 Birational germs of marked surfaces with one tree

Let (S,C0) be a marked surface with GSS and let M be the intersection matrix of the rational
curves. We suppose that C0 is the root of the unique tree (see picture in section 2.1). Then we
have

Πl · · ·Πn−1(u′′, v′′) = (u′′pv′′q + al−1, u
′′rv′′s)

where (u′′, v′′) = (u, v) or (u′′, v′′) = (u′, v′),

(
p q
r s

)
is the composition of matrices A =(

1 1
0 1

)
or A′ =

(
0 1
1 1

)
, the last one being equal to A′. We set

δ := ps− qr = ±1,

1 ≤ d := (r + s)− (p+ q) < r + s.

Moreover

Π0 · · ·Πl−1(u, v) =

(
uvl +

l−2∑
i=0

aiv
i+1, v

)
Hence

F (z) = Πσ(z) =

(
σ1(z)p+rlσ2(z)q+sl +

l−1∑
i=0

ai

(
σ1(z)rσ2(z)s

)i+1

, σ1(z)rσ2(z)s

)
,

where σ is a germ of biholomorphism.

If there is no global vector fields the number of parameters given by the blown up points
is 2n and the expected number of parameters of the versal deformation, therefore the question
arises to know if with σ = Id we obtain locally versal families. If there are non trivial global
vector fields we need (at least) an extra parameter. We add this parameter by the composition
Π0 · · ·Πl−1σ̄Πl · · ·Πn−1Id where

σ̄(u, v) = (u+ al+Kv
l+K , v), K ≥ 0,

where K will be chosen in proposition 40. We obtain a new mapping (denoted in the same
way)

F (z) = Π0 · · ·Πl−1σ̄Πl · · ·Πn−1Id(z)

=
(
zp+rl1 zq+sl2 +

∑l−1
i=0 ai

(
zr1z

s
2

)i+1
+ al+K(zr1z

s
2)l+K+1, zr1z

s
2

)
.

Now we choose σ such that the following diagram

Wn−1
σ-Wn−1

Πn−1

? ?

Πn−1

...
...

Πl

? ?

Πl

Wl−1
σ̄-Wl−1
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is commutative, therefore we obtain a one parameter family of birational functions σ = σal+K
depending on al+K such that F = Πσ is birational and in usual form. We obtain large families
SJ,σal+K→BJ and we shall prove that the stratum BJ,M is a ramified covering over the OT

moduli space of marked surfaces with GSS and intersection matrice M .

Lemma 5. 39 Let

F (z) = Πσ(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

then the associated surface S = S(F ) admits a non trivial global twisted vector field if and only
if

u =
p+ s+ rl − 1− δ

r + s− 1
, v =

r + q + sl − 1 + δ

r + s− 1
, where δ := ps− qr

are positive integers. Moreover this twisted vector field is a global vector field if and only if

δau0k(S) = 1.

Proof: We have by a straightforwad computation

detDF (z) = (ps− qr)zp+r(l+1)−1
1 z

q+s(l+1)−1
2 .

By [9], there exists a non trivial global twisted vector field θ ∈ H0(S,Θ⊗Lλ) on S if and only
if there is a global twisted section of the anticanonical bundle ω ∈ H0(S,K−1⊗Lκ). Moreover
the twisting factors satisfy the relation λ = k(S)κ. The section θ is a global vector field if λ = 1
i.e.

κ =
1

k(S)
(1)

Such a section exists if and only if there is a germ of 2-vector field (denoted in the same way)

ω(z) = zu1 z
v
2A(z)

∂

∂z1
∧ ∂

∂z2

where A(0) 6= 0 such that ω(F (z)) = κdetDF (z)ω(z), or equivalently,

(a0z
r
1z
s
2 + · · · )u(zr1z

s
2)vA(F (z)) = κ(ps− qr)zp+r(l+1)−1+u

1 z
q+s(l+1)−1+v
2 A(z).

Comparing terms of lower degree, we obtain the necessary condition

au0 (zr1z
s
2)u+v = κ(ps− qr)zp+r(l+1)−1+u

1 z
q+s(l+1)−1+v
2

therefore u and v satisfy the linear system r(u+ v) = p+ r(l + 1)− 1 + u

s(u+ v) = q + s(l + 1)− 1 + v

The determinant of the system is ∆ = −r − s+ 1 < 0 and the solution is

u =
p+ s+ rl − 1− δ

r + s− 1
, v =

r + q + sl − 1 + δ

r + s− 1
, where δ := ps− qr = ±1.

Since u and v are the vanishing orders of ω along the curves, a necessary condition for the
existence of ω is that u and v are positive integers. Cancelling the common factors we obtain

au0 = κδ
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and with relation (1)

κ = δau0 =
1

k(S)
.

If u and v are integers,
(a0 + · · · )uA(F (z)) = κδA(z),

with a0 6= 0. Setting

1 + f(z) =
κδ

(a0 + · · · )u
,

we have
A(F (z)) = (1 + f(z))A(z)

Therefore

A(z) =
A(0)

∞∏
j=0

(
1 + f(F j(z))

) ,
the infinite product converges because F is contractant. This proves the existence of ω. �

Proposition 5. 40 Let

F (z) = Πσ(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

and let S = S(F ) be the associated surface. Then the surface S(F ) admits a non trivial global
twisted vector field if and only if there exists an integer k ≥ 0 such that

l = d+ k(r + s− 1),

If this condition is fulfilled, we choose
K = k

and S(F ) admits a non trivial vector field if and only if for u = p+s+rl−1−δ
r+s−1 ∈ N?,

δau0k(S) = 1.

Proof: With notations of lemma 5.39, we have to show that u and v are integers if and only if
l = d+ k(r + s− 1).
If u and v are integers,

u+ v = l + 1 +
p+ q + l − 1

r + s− 1
∈ N,

where p + q < r + s. Therefore, l = d + k(r + s − 1). Conversely, if l = d + k(r + s − 1), it is
easy to check that u and v are integers and the proof is left to the reader. �

Proposition 5. 41 Let

F (z) = Πσ(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

and S = S(F ) the associated surface. Then

k(S) = r + s.
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Proof: The dual graph of the curves is composed of a cycle with (here) only one chain of rational
curves called the tree. The proof is achieved by induction on the number N ≥ 1 of singular
sequences. We denote as in [5]

a(S) = (sk1 · · · skN rl),
where for any k ≥ 1, sk is the singular k-sequence sk = (k + 2, 2, . . . , 2) and rl is the regular
l-sequence rl = (2, . . . , 2). We have(

p q
r s

)
=

(
0 1
1 k1

)
· · ·
(

0 1
1 kN

)
and for any 1 ≤ i ≤ N we set(

pi qi
ri si

)
=

(
pi(k1, . . . , ki) qi(k1, . . . , ki)
ri(k1, . . . , ki) si(k1, . . . , ki)

)
=

(
0 1
1 k1

)
· · ·
(

0 1
1 ki

)
,

therefore (
pi qi
ri si

)
=

(
qi−1 pi−1 + kiqi−1

si−1 ri−1 + kisi−1

)
(2)

If N = 1, dual graph of the curves is

{2

{2{2{2{2

+2)k{(

the (opposite) intersection matrix of the (unique) tree is the matrix of a chain of length k

δk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 . . . . . . 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . −1
0 . . . . . . 0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We have δk = k + 1 and by [7], k(S) is equal to δk. Now here(

p q
r s

)
=

(
0 1
1 k

)
therefore the result is checked for N = 1.
If N = 2, the sequence of opposite self-intersections of the curves in the tree is

2 · · · 2︸ ︷︷ ︸
k1−1

(k2 + 2)

On one hand (
p q
r s

)
=

(
0 1
1 k1

)(
0 1
1 k2

)
=

(
1 k2

k1 1 + k1k2

)
On second hand, the order of the (opposite) intersection matrix of the tree is k1. By [7],

k(S) =

∣∣∣∣∣∣∣∣∣∣
2 −1

−1
. . .

. . .

. . . 2 −1
−1 k2 + 2

∣∣∣∣∣∣∣∣∣∣
= k1k2 + k1 + 1 = r + s.
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• If N = 2ν, the sequence of opposite self-intersections of the curves in the tree is

2 · · · 2︸ ︷︷ ︸
k1−1

(k2 + 2) 2 · · · 2︸ ︷︷ ︸
k3−1

· · · · · · · · · 2 · · · 2︸ ︷︷ ︸
k2ν−1−1

(k2ν + 2)

• If N = 2ν + 1, the sequence of opposite self-intersections is

2 · · · 2︸ ︷︷ ︸
k1−1

(k2 + 2) 2 · · · 2︸ ︷︷ ︸
k3−1

· · · · · · · · · 2 · · · 2︸ ︷︷ ︸
k2ν−1−1

(k2ν + 2) 2 · · · 22︸ ︷︷ ︸
k2ν+1

• If N = 2ν, we have (
p q
r s

)
=

(
0 1
1 k1

)
· · ·
(

0 1
1 k2ν

)
the determinant of the opposite self-intersection matrix of the tree is

δ(k1, . . . , k2ν) =

∣∣∣∣∣∣∣∣∣∣∣∣
D

−1

−1
k2ν + 2

∣∣∣∣∣∣∣∣∣∣∣∣
where D = D(k1, . . . , k2ν−1) is the block corresponding to

2 · · · 2︸ ︷︷ ︸
k1−1

(k2 + 2) 2 · · · 2︸ ︷︷ ︸
k3−1

· · · · · · · · · 2 · · · 2︸ ︷︷ ︸
k2ν−1−1

We have by [7], the induction hypothesis and relations (2),

k(S) = δ(k1, . . . , k2ν) = k2ν detD(k1, . . . , k2ν−1) + detD(k1, . . . , k2ν−1 + 1)

= k2ν

(
r(k1, . . . , k2ν−2, k2ν−1 − 1) + s(k1, . . . , k2ν−2, k2ν−1 − 1)

)
+r(k1, . . . , k2ν−1) + s(k1, . . . , k2ν−1)

= k2ν

(
r(k1, . . . , k2ν−2, k2ν−1) + s(k1, . . . , k2ν−2, k2ν−1)− s(k1, . . . , k2ν−2)

)
+r(k1, . . . , k2ν−1) + s(k1, . . . , k2ν−1)

= k2νs(k1, . . . , k2ν−2, k2ν−1) + r(k1, . . . , k2ν−1) + s(k1, . . . , k2ν−1)

= r(k1, . . . , k2ν) + s(k1, . . . , k2ν) = r + s.

• If N = 2ν + 1, we follow similar arguments:
Let D be the matrix of the chain

2 · · · 2︸ ︷︷ ︸
k1−1

(k2 + 2) 2 · · · 2︸ ︷︷ ︸
k3−1

· · · · · · · · · 2 · · · 2︸ ︷︷ ︸
k2ν−3−1

(k2ν−2 + 2)

then by [7], k(S) = δ(k1, . . . , k2ν+1) and
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δ(k1, . . . , k2ν+1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D
−1

−1

2 −1

−1
. . .

. . .

. . . 2 −1
. . . k2ν + 2

. . .

−1 2
. . .

. . .
. . . −1
−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

∑ν−1
i=1 k2i−1

∑ν
i=1 k2i−1

∑ν+1
i=1 k2i−1

= k2ν(k2ν+1 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D
−1

−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

∑ν−1
i=1 k2i−1∑ν−1
i=1 k2i−1+1

∑ν
i=1 k2i−1−1

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D
−1

−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

∑ν−1
i=1 k2i−1∑ν−1
i=1 k2i−1+1

∑ν
i=1 k2i+1

= k2ν(k2ν+1 + 1)δ(k1, . . . , k2ν−2, k2ν−1 − 1) + δ(k1, . . . , k2ν−2, k2ν−1 + k2ν+1)

= k2ν(k2ν+1 + 1)
(
r2ν−1 + s2ν−1 − s2ν−2

)
+ s2ν−2 + r2ν−2

+(k2ν−1 + k2ν+1)s2ν−2.

A straightforward computation show that this last expression is equal to r2ν+1 + s2ν+1.
�

Corollary 5. 42 The index of the surface S(F ) is

Index(S) =
r + s− 1

gcd{r + s− 1, p+ q + l − 1}
.

Corollary 5. 43 Suppose that l = d + k(r + s − 1), then S admits a non trivial global vector
field if and only if

1− δ(r + s)a
(k+1)r−p+1
0 = 0.
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Proof: If l = d+ k(r + s− 1), it is easy to check that

u =
p+ s+ rl − 1− δ

r + s− 1
= (k + 1)r − p+ 1.

By propositions 5.40 and 5.41, we have the result. �

Notations 5. 44 We denote by G = G(p, q, r, s, l) the family of contracting birational mappings

G(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

where a0 ∈ C?, ai ∈ C, i = 1, . . . , l − 1, l + K, al+K = 0 if there is no integer k such
that l = d + k(r + s − 1) and by Φ = Φ(p, q, r, s, l) the set of the germs of biholomorphisms
ϕ : (C2, 0) → (C2, 0) for which there exists G,G′ ∈ G such that G′ = ϕ−1Gϕ ∈ G. Let
L := L(p, q, r, s, l) be the group of diagonal linear mappings ϕA,B(z1, z2) = (Az1, Bz2) where
A,B satisfy the condition

B = ArBs, A = Ap+rlBq+sl

Lemma 5. 45 1) The group L is a subgroup of Up+s+rl−δ−1 × Up+s+rl−δ−1, where for any
m ∈ N?, Um is the group of m-roots of unity.
2) The group L operates on G; more precisely if ϕA,B ∈ L and

G(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

then

G′(z) = ϕ−1
A,BGϕA,B(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

a′i
(
zr1z

s
2

)i+1
+ a′l+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

where
Aa′i = Bi+1ai, for i = 0, . . . , l − 1, l +K.

In particular L is an abelian group contained in Φ.

The proof is easy and left to the reader. �

5.2 Moduli spaces of birational mappings

We want to determine the equivalence classes of the birational mappings G, previously defined
or, that is equivalent, the fibers of the canonical morphism to the OT moduli space. Let

G(z) = Πσ(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

G′(z) = Π′σ′(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

a′i
(
zr1z

s
2

)i+1
+ a′l+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
be two such birational germs and suppose that there exists a germ of biholomorphism ϕ such
that G′ ◦ ϕ = ϕ ◦G. Since the degeneration set {z1z2 = 0} is invariant and ϕ cannot swap the
rational curves, ϕ has the form

ϕ(z1, z2) =
(
Az1(1 + θ(z)), Bz2(1 + µ(z))

)
.
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We have

ϕ(G(z)) =

A(zp+rl1 zq+sl2 +
∑

i∈{0,...,l−1,l+K}

ai
(
zr1z

s
2

)i+1
)(

1 + θ(G(z))
)
, Bzr1z

s
2

(
1 + µ(G(z))

)
G′(ϕ(z)) =

((
Az1(1 + θ(z))

)p+rl(
Bz2(1 + µ(z))

)q+sl
+

∑
i∈{0,...,l−1,l+K}

a′i

(
Az1(1 + θ(z))

)r(i+1)(
Bz2(1 + µ(z))

)s(i+1)

,

ArBszr1z
s
2(1 + θ(z))r(1 + µ(z))s

)
Second members yield the equality

(II) B
(
1 + µ(G(z))

)
= ArBs(1 + θ(z))r(1 + µ(z))s

Therefore

B = ArBs, and 1 + µ(z) =

 ∞∏
j=0

(
1 + θ(Gj(z))

)r/sj+1

−1

. (3)

First members of the conjugation give

(I)



A
(
zp+rl1 zq+sl2 +

∑
i∈{0,...,l−1,l+K}

ai
(
zr1z

s
2

)i+1
)(

1 + θ(G(z))
)

=
(
Az1(1 + θ(z))

)p+rl(
Bz2(1 + µ(z))

)q+sl
+

∑
i∈{0,...,l−1,l+K}

a′i

(
Az1(1 + θ(z))

)r(i+1)(
Bz2(1 + µ(z))

)s(i+1)

Setting δ = ps− qr = ±1, we obtain with (3),

(I)



A
(
zp+rl1 zq+sl2 +

∑
i∈{0,...,l−1,l+K}

ai
(
zr1z

s
2

)i+1
)(

1 + θ(G(z))
)

= Ap+rlBq+slzp+rl1 zq+sl2 (1 + θ(z))δ/s

 ∞∏
j=1

(
1 + θ(Gj(z))

)r/sj+1

−(q+sl)

+
∑

i∈{0,...,l−1,l+K}

a′iB
i+1z

r(i+1)
1 z

s(i+1)
2

 ∞∏
j=1

(
1 + θ(Gj(z))

)r/sj+1

−s(i+1)

The following lemma is evident:

Lemma and Definition 5. 46 The positive integral solutions of the system

(E)

{
p+ rl + α = rj
q + sl + β = sj

are all of the form {
α = kr − p
β = ks− q , k ≥ 1.

In particular the least solution is (r−p, s− q). When (E) has a solution we shall say that there
is a resonance.
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Comparing monomial terms zp+rl1 zq+sl2 in (I) we obtain thanks to lemma 5.46

A = Ap+rlBq+sl (4)

By lemma 5.45, A, B are roots of unity.
Let Aut(C2, 0) be the group of germs of biholomorphisms of (C2, 0) and Aut(C2, H, 0) be the
subgroup of Aut(C2, 0) which leave each of the components of the hypersurface H = {z1z2 = 0}
invariant, i.e. ϕ ∈ G has the form

ϕ(z) =
(
Az1(1 + θ(z)), Bz2(1 + µ(z))

)
.

Let Aut(C2, H, 0)I be the subgroup of Aut(C2, 0) of germs of biholomorphisms ϕ tangent to
the identity, i.e.

ϕ(z) =
(
z1(1 + θ(z)), z2(1 + µ(z))

)
.

Lemma 5. 47 Let α : Aut(C2, H, 0)I → Aut(C2, H, 0) the canonical injection and β : Aut(C2, H, 0)→
L defined by β(ϕ) = ϕAB. Then, Aut(C2, H, 0)I is a normal subgroup of Aut(C2, H, 0) and we
have the exact sequence

{Id} → Aut(C2, H, 0)I
α→ Aut(C2, H, 0)

β→ L→ {Id}.

Replacing ϕ by ϕϕ−1
A,B we obtain an automorphism tangent to the identity, therefore we

have to determine equivalence classes of the equivalence relation on G

G ∼ G′ ⇐⇒ ∃ ϕ ∈ Aut(C2, H, 0)I , G′ϕ = ϕG.

The equation (I) becomes

(I)



(
zp+rl1 zq+sl2 +

∑
i∈{0,...,l−1,l+K}

ai
(
zr1z

s
2

)i+1
)(

1 + θ(G(z))
)

= zp+rl1 zq+sl2 (1 + θ(z))δ/s

 ∞∏
j=1

(
1 + θ(Gj(z))

)r/sj+1

−(q+sl)

+
∑

i∈{0,...,l−1,l+K}

a′i(z
r
1z
s
2)i+1

 ∞∏
j=1

(
1 + θ(Gj(z))

)r/sj+1

−s(i+1)

The question is to determine the quotient G/ ∼. We shall see at the end of this section that
the equivalence relation is generically trivial.

Lemma 5. 48 Let µ = max

{
d, l +

[
l − d

r + s− 1

]}
and θ(z) =

∑
i+j≥1 tijz

i
1z
j
2. If tij = 0 for

i+ j ≤ µ, then
θ = 0

and ϕ is linear.

Proof: By hypothesis we have

θ(G(z)) =

 ∑
i+j=µ+1

ai0tij

 (zr1z
s
2)µ+1 mod M(r+s)(µ+1)+1.
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We show by induction on k = i+ j ≥ µ+ 1 that tij = 0.
We consider the terms of degree p+ q + (r + s)l + µ+ 1

zp+rl1 zq+sl2

δ

s

∑
i+j=µ+1

tijz
i
1z
j
2

and we are looking for other terms of the same degree or bidegrees in (I).
The inequalities

(r + s)l = p+ q + (r + s− 1)l + d < p+ q + (r + s)l + µ+ 1,

p+ q + (r + s)l + µ+ 1 < p+ q + (r + s)l + (r + s)(µ+ 1),

p+ q + (r + s)l + µ+ 1 < r + s+ (r + s)(µ+ 1)

show that there is no other term of the same degree when aK+l = 0. If aK+l 6= 0, l =
d + K(r + s − 1) and it is easy to check that (r + s)(l + K) 6= p + q + (r + s)l + µ + 1, hence
tij = 0 if i+ j = µ+ 1.
Suppose that for k ≥ µ+ 2,

θ(z) =
∑
i+j≥k

tijz
i
1z
j
2,

then the similar inequalities show the result. �

Lemma 5. 49 Let µ = max

{
d, l +

[
l − d

r + s− 1

]}
.

Then, the coefficients tij, for i + j ≤ µ, with ai and a′i, i = 0, . . . , l − 1, l + K, determine
uniquely θ hence also ϕ.

Proof: We show by induction on k ≥ 0 that the coefficients tij for i + j ≤ µ determine
uniquely the coefficients tij for i + j ≥ µ + k. It is sufficient to show that if the coefficients
tij , for i + j ≤ µ + k are determined by coefficients tij for i + j ≤ µ then the coefficients tij
for i+ j = µ+ k + 1 are determined by coefficients tij for i+ j ≤ µ+ k. On that purpose we
consider homogeneous part of degree p+ q + (r+ s)l+ µ+ k + 1 in (I) which contain the part

zp+rl1 zq+sl2

δ

s

 ∑
i+j=µ+k+1

tijz
i
1z
j
2


In order to prove that all other terms with such degree involve only tij with i+ j ≤ µ+ k, it is
sufficient to prove that if i+ j ≥ µ+ k + 1 then

r + s+ (i+ j)(r + s) > p+ q + (r + s)l + µ+ k + 1,

and it is sufficient to prove that

r + s+ (µ+ k + 1)(r + s) > p+ q + (r + s)l + µ+ k + 1.

• If l ≤ d, µ = d, and we have to check that

r + s+ (d+ k + 1)(r + s) > p+ q + (r + s)d+ d+ k + 1

which is clear;
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• If d+K(r + s− 1) ≤ l < d+ (K + 1)(r + s− 1), then µ = l +K. We have to check

r + s+ (l +K + k + 1)(r + s) > p+ q + (r + s)l + l +K + k + 1

However this inequality is equivalent to

d+ (K + k + 1)(r + s− 1) > l

which is satisfied by assumption.

�

Proposition 5. 50 Let G = G(p, q, r, s, l) the family of contracting birational mappings

G(z) =

(
zp+rl1 zq+sl2 +

l−1∑
i=0

ai
(
zr1z

s
2

)i+1
+ al+K

(
zr1z

s
2

)l+K+1
, zr1z

s
2

)
,

where a0 ∈ C?, ai ∈ C, i = 1, . . . , l− 1, l+K, al+K = 0 if there is no non trivial twisted vector
fields.
1) The surfaces S(G) have no twisted vector fields, i.e. l − d 6≡ 0 mod r + s− 1, if and only if
Aut(C2, H, 0)I ∩ Φ = {Id}.
2) If l = d+K(r + s− 1), then Aut(C2, H, 0)I ∩ Φ is a group isomorphic to (C,+) and

a) If there are global vector fields, Aut(C2, H, 0)I ∩ Φ acts trivially on G, in particular al+K
is an effective parameter,

b) If there are no global vector fields, Aut(C2, H, 0)I ∩ Φ acts transitively on Cal+K , i.e. the
complex structure on S(G) does not depend on al+K .

Proof: Suppose that θ 6= 0 and let γ = min{i + j ≥ 1 | tij 6= 0}. By lemma 48, γ ≤ µ. The
homogeneous parts of lower degree in (I) which involve tij with γ = i+ j are

• Case γ ≤ l − 1 or γ = l +K,

(A) a0z
r
1z
s
2

 ∑
i+j=γ

tija
i
0

 (zr1z
s
2)γ + aγ(zr1z

s
2)γ+1,

(B) zp+rl1 zq+sl2

δ

s

∑
i+j=γ

tijz
i
1z
j
2,

(C) −r
s
a0z

r
1z
s
2

 ∑
i+j=γ

tija
i
0

 (zr1z
s
2)γ + a′γ(zr1z

s
2)γ+1

• Case γ ≥ l and γ 6= l +K, (A) is replaced by

(A′) a0z
r
1z
s
2

 ∑
i+j=γ

tija
i
0

 (zr1z
s
2)γ ,

and (C) by

(C ′) −r
s
a0z

r
1z
s
2

 ∑
i+j=γ

tija
i
0

 (zr1z
s
2)γ
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• If there is no resonance, the bidegrees of the terms (A) and (C) (resp. (A′) and (C ′)) are
all distinct of those in (B), therefore we obtain readily∑

i+j=γ

tijz
i
1z
j
2 = 0,

hence a contradiction

• Therefore there is a resonance and there exists a unique coefficient tkr−p,ks−q 6= 0 with
k(r + s)− (p+ q) = γ. Then

– Case γ ≤ l − 1 or γ = l +K,

a0z
r
1z
s
2tkr−p,ks−qa

kr−p
0 (zr1z

s
2)γ + aγ(zr1z

s
2)γ+1

= zp+rl1 zq+sl2
δ
s tkr−p,ks−qz

kr−p
1 zks−q2 + a′γ(zr1z

s
2)γ+1 − r

sa0z
r
1z
s
2tkr−p,ks−qa

kr−p
0 (zr1z

s
2)γ

– Case γ ≥ l, γ 6= l +K

a0z
r
1z
s
2tkr−p,ks−qa

kr−p
0 (zr1z

s
2)γ

= zp+rl1 zq+sl2
δ
s tkr−p,ks−qz

kr−p
1 zks−q2 − r

sa0z
r
1z
s
2tkr−p,ks−qa

kr−p
0 (zr1z

s
2)γ

The equality of degrees implies that l = d+(k−1)(r+s−1), i.e. the surface has twisted vector
fields and γ = l + (k − 1) = l + K (and the second case never appears). After simplification,
we obtain

a′l+K = al+K − tkr−p,ks−q
δ

s

(
1− δ(r + s)akr−p+1

0

)
Let M = (z1, z2). Since θ(z) = 0 mod Ml+K , (I) gives

a′i = ai, for i = 0, . . . , l − 1,

therefore, applying corollary 43,

• If there are global vector fields, 1 − δ(r + s)akr−p+1
0 = 0 and a′l+K = al+K , hence

Aut(C2, H, 0)I ∩ Φ acts trivially;

• If there are no vector fields, 1− δ(r + s)akr−p+1
0 6= 0, and GI ∩Φ acts transitively on the

line Cal+K .

By lemma 49, t = t(K+1)r−p,(K+1)s−q ∈ C determines the formal series θ. It remains to prove
that θ is convergent hence Aut(C2, H, 0)I ∩ Φ ' C.

• If there are global vector fields, there exists a 1-parameter group of automorphisms, there-
fore there are such θ and conversely, any θ defines an automorphism of S(G) which is in
the identity component of Aut(S(G));

• If there is no global vector fields, al+K is a superfluous parameter and all surfaces are
isomorphic, therefore there are such isomorphisms.

�

5.3 Representation of any marked surface by a birational germ

We want to compare birational germs and Favre polynomial germs of the form

F (z1, z2) = (λz1z
σ
2 + P (z2) + cz

σk
k−1

2 , zk2 ), P (z2) =

σ∑
i=p+q

biz
i
2
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given in [25] (see section 4.1). The condition j < k (or p+ q < r + s in our notations) implies
that the first blowing-up is of the form (u′, v′) 7→ (v′, u′v′) hence we have to consider the germ
Πl · · ·Πn−1Π0 · · ·Πl−1σ̄ at the point (al−1, 0). After a change of coordinates u = z1 + al−1,
v = z2 we obtain

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)r
zs2

)
We shall suppose that al+K = 0 if there is no global vector fields i.e. l − d 6≡ 0
mod k − 1 or λ 6= 1.
By proposition 4.36 , λ is determined by a0, more precisely

Proposition 5. 51 Let (S,C0) be a marked surface such that the dual graph of the curves
contains only one tree and C0 is the (unique) root in the cycle of rational curves. Let G and F
be respectively the birational germ and the Favre germ associated to (S,C0). Then,
1) If µ is the index of S and δ = ps− qr

κ = δµa
µ[ rσk−1−(p−1)]
0 .

2) If λ is the parameter in Favre normal forms, λ is determined up to a root of unity, more
precisely

λ−1 = εσδka
1−p+ rσ

k−1

0 , εk−1 = 1.

Proof: By lemma 4.35 and proposition 5.41,

κ = δµa
µ[ rσk−1−(p−1)]
0 .

Applying 1), lemmas 4.31 and 4.23,

λ−1 = εσδk(S)a
1−p+ rσ

k−1

0 .

�

The aim of the sequel of this section is to prove

Theorem 5. 52 We choose a0 ∈ C?, ε such that εr+s−1 = 1, and let σ = p+ q + l − 1. Then
A) If r + s− 1 does not divide l − d or λ 6= 1 there is a bijective polynomial mapping

fa0,ε : Cl−1 −→ Cl−1

a = (a1, . . . , al−1) 7−→
(
bp+q+1(a), . . . , bp+q+l−1(a)

)
such that

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

)r
zs2

)
is conjugated to the polynomial germ

F (z1, z2) =
(
λz1z

σ
2 +

σ∑
i=p+q

biz
i
2, z

r+s
2

)
,

where λ depends only on a0 by 5.51.
B) If l − d = K(r + s− 1) and λ = 1, there is a bijective polynomial mapping

fa0,ε : Cl−1 × C −→ Cl−1 × C
a = (a1, . . . , al−1, al+K) 7−→

(
bp+q+1(a), . . . , bp+q+l−1(a), c(a)

)
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such that

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)r
zs2

)

is conjugated to the polynomial germ

F (z1, z2) =

λz1z
σ
2 +

σ∑
k=p+q

bkz
k
2 + cz

σk(S)
k(S)−1

2 , zr+s2

 .

Proof: Let ϕ(z) =
(
ϕ1(z), Cz2(1 +µ(z))

)
be a germ of biholomorphic map which preserves the

degeneration set {z2 = 0}.
A) We suppose that l− d 6≡ 0 mod r + s− 1 or λ 6= 1. We have, since al+K = 0,

ϕ(G(z)) =

(
ϕ1

(
G(z)

)
, C

{
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

}r
zs2

(
1 + µ(G(z)

))
,

F (ϕ(z)) =

λϕ1(z)Cσzσ2 (1 + µ(z))σ +

σ∑
k=p+q

bkC
kzk2 (1 + µ(z))k, Cr+szr+s2 (1 + µ(z))r+s

 .

Comparing right members we have

(II)

{
z1z

l−1
2 +

l−1∑
i=0

aiz
i
2

}r (
1 + µ(G(z)

)
= Cr+s−1zr2(1 + µ(z))r+s.

Constant parts give the condition
ar0 = Cr+s−1 (5)

therefore C is determined up to a root of unity ε such that εr+s−1 = 1. In other terms if we

choose a local determination of the (r + s− 1)-root a
1/(r+s−1)
0 ,

C = εa
r/(r+s−1)
0 , εr+s−1 = 1. (6)

Moreover the equation

(II)

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}r (
1 + µ(G(z)

)
= (1 + µ(z))r+s.

has the solution

1 + µ(z) =

∞∏
j=0

{
1 +

1

a0

(
l−1∑
i=1

ai(G
j
2(z))i +Gj1(z)(Gj2(z))l−1

)} r

(r+s)j+1

Left members give the equality
(I)

ϕ1

(
ap0

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}p
zp+q2 , ar0

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}r
zr+s2

)

= λϕ1(z)
(
Cz2(1 + µ(z)

)p+q+l−1

+

p+q+l−1∑
k=p+q

bkC
kzk2 (1 + µ(z))k
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We want to express the coefficients bk with the ai’s, however the coefficients Aij of the series

ϕ1(z1, z2) =
∑
i,j

Aijz
i
1z
j
2

depend also on ai’s. For example, considering homogeneous parts of bidegree (0, p + q), we
have,

(R0) A10a
p
0 = bp+qC

p+q = Cp+q

hence with (6),

A10 = εp+qa
(p+q)r
r+s−1−p
0 . (7)

If p > 0, r + s > p+ q + 1 and l ≥ 2, homogeneous part of bidegree (0, p+ q + 1) gives

A10a
p−1
0 pa1 = bp+q+1C

p+q+1 + Cp+q
(p+ q)r

r + s

a1

a0

therefore by (R0),

(R1) bp+q+1 =
δa1

Ca0(r + s)
.

Comparing terms of bidegree (1, p+ q + l − 1) we obtain

A10pa
p−1
0 = λA10C

p+q+l−1 +
r(p+ q)

r + s

Cp+q

a0

therefore with (7) and (6), and since k = k(S) = r + s,

λ =
δ

εσk
a
p−1− rσ

k−1

0 . (8)

where δ = ps− qr.

In order to express the coefficients bp+q+j , j ≥ 1, as polynomials of variables a1, . . . , al−1,
it is also necessary to express the coefficients Aij involved in the relations as polynomials of
the same variables a1, . . . , al−1. Therefore we have to determine the set of points (i, j) ∈ N×N
which occur as indices of the Aij ’s in the relations.
Let E0 be the subset of indices (i, j) which occur in homogeneous part of bidegree (0, k) for
p+ q ≤ k ≤ p+ q + l − 1 in equation (I). We have

E0 = {(i, j) | p+ q ≤ i(p+ q) + j(r + s) ≤ p+ q + l − 1}

Then we define a translation

T (i, j) = (i, j + p+ q + l − 1)

and we want to determine which coefficients Aαβ are involved on the homogeneous part of
bidegree T (i, j). On that purpose we define a sequence (Em)m≥−1 of increasing subsets of
N× N, starting with E−1 = ∅,

Em =

{
(i, j) | i(p+ q) + j(r + s) ≤ (p+ q + l − 1)

(
1 +

1

r + s
+ · · ·+ 1

(r + s)m

)}
, m ≥ 0,

and

E∞ :=

{
(i, j) | i(p+ q) + j(r + s) < (p+ q + l − 1)

r + s

r + s− 1

}
.
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Lemma 5. 53 Suppose l − d 6≡ 0 mod r + s− 1. Let (i, j) ∈ Em, m ≥ 0.
1) If i ≥ 2 then for any (α, β), the homogeneous parts of bidegree (i, j + p+ q + l − 1) satisfy〈

Aαβ a
pα+rβ
0

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}pα+rβ

z
α(p+q)+β(r+s)
2

〉
i,j+p+q+l−1

= 0.

2) If i = 1, and homogeneous part of bidegree (i, j + p+ q + l − 1) satisfies〈
Aαβ a

pα+rβ
0

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}pα+rβ

z
α(p+q)+β(r+s)
2

〉
i,j+p+q+l−1

6= 0

then (α, β) ∈ E1.
Moreover

• If m = 0, then (α, β) ∈ E0,

• If α = 1, then β ≤ j/(r + s), in particular if j 6= 0, then β 6= j,

• If α = 0, then β < j or
{

(i, j) = (1, 1) and (α, β) = (0, 1)
}

.

3) If i = 0 and〈
A0β a

rβ
0

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}rβ
z
β(r+s)
2

〉
0,j+p+q+l−1

6= 0,

the following two conditions cannot be fulfilled at the same time

• i = α = 0, and j = β,

• β(r + s) = j + p+ q + l − 1,

i.e. if the coefficient A0,j appears two times when considering homogeneous part of bidegree
(0, j + p+ q + l − 1), one occurrence is multiplied by a non constant polynomial in a1, . . . , aj.
4) If (i, j) ∈ Em and i ≥ 2, then Aij = 0.
5) If (0, j) ∈ Em \ Em−1, m ≥ 0 and (α, β) satisfies

α(p+ q) + β(r + s) = j + p+ q + l − 1,

then

• (α, β) ∈ Em+1 \ Em
• α = 0 or α = 1 and (α, β) is unique.

In other words, in homogeneous part of bidegree (0, j + p + q + l − 1), there are, modulo M =
(a1, . . . , al−1), at most two coefficients which occur: A0,j and perhaps another Aαβ with α = 0
or α = 1.

Proof: If〈
Aαβ a

pα+rβ
0

{
1 +

1

a0

(
l−1∑
i=1

aiz
i
2 + z1z

l−1
2

)}pα+rβ

z
α(p+q)+β(r+s)
2

〉
i,j+p+q+l−1

6= 0

then, pα+ rβ ≥ i, and the least degree in z2 is

(l − 1)i+ α(p+ q) + β(r + s).
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Since 〈.〉i,j+p+q+l−1 6= 0,

(∗) (l − 1)i+ α(p+ q) + β(r + s) ≤ j + p+ q + l − 1

however by assumption (i, j) ∈ Em ⊂ E∞,

j <
p+ q + l − 1

r + s− 1
− i p+ q

r + s

therefore

(∗∗) (l − 1)i+ i
p+ q

r + s
+ α(p+ q) + β(r + s) < (p+ q + l − 1)

(
1 +

1

r + s− 1

)
Notice that (i, j) = (α, β) if and only if (i, j) = (1, 0).
1) If i ≥ 2, we have, by (∗∗),

2(l − 1) + 2
p+ q

r + s
+ α(p+ q) + β(r + s) < (p+ q + l − 1)

(
1 +

1

r + s− 1

)
Since p+ q < r + s,

(l − 1)

(
1− 1

r + s− 1

)
+ (p+ q)

(
2

r + s
− 1

r + s− 1
+ α+ β − 1

)
< 0

which is impossible.
2) Suppose that (i, j) ∈ Em, and i = 1 then

j <
p+ q + l − 1

r + s

(
1 +

1

r + s− 1

)
− p+ q

r + s

and by (∗)

(l − 1) +
p+ q

r + s
+ α(p+ q) + β(r + s) < (p+ q + l − 1)

(
1 +

1

r + s
+

1

(r + s)(r + s− 1)

)
which is equivalent to

(l − 1)

(
1− 1

(r + s)(r + s− 1)

)
+ (p+ q)

(
1

r + s
− 1

(r + s)(r + s− 1)

)
+ α(p+ q) + β(r + s)

< (p+ q + l − 1)

(
1 +

1

r + s

)
hence

α(p+ q) + β(r + s) ≤ (p+ q + l − 1)

(
1 +

1

r + s

)
and (α, β) ∈ E1.
If m = 0, the result derives from the definition of E0 and (∗).
If in (∗), α = 1, β(r + s) ≤ j.
If in (∗), α = 0, β(r + s) ≤ j + (p+ q). If moreover β ≥ j, j(r + s− 1) ≤ p+ q, hence

• j = 0 and β(r + s) ≤ p+ q which is impossible because α = 0,

• j = 1, and β = 1.
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3) Let (0, j) ∈ Em, with m ≥ 0 is minimal. We have

j(r + s) ≤ (p+ q + l − 1)

(
1 +

1

r + s
+ · · ·+ 1

(r + s)m

)
.

If j(r + s) = j + p+ q + l − 1, then

j ≤ (p+ q + l − 1)

(
1

r + s
+ · · ·+ 1

(r + s)m

)
hence

j(r + s) ≤ (p+ q + l − 1)

(
1 +

1

r + s
+ · · ·+ 1

(r + s)m−1

)
.

and (0, j) ∈ Em−1 which is contradictory.
4) Let (i, j) ∈ Em with i ≥ 2 and consider part of bidegree (i, j + p + q + l − 1). By 1), left
member of (I) gives no contribution, we show now that〈

bkC
kzk2 (1 + µ(z))k

〉
i,j+p+q+l−1

= 0.

In fact, the monomials which contain zi1 contain z2 at the power at least k + i(l − 1) with
p+ q ≤ k ≤ p+ q + l − 1 and it is sufficient to show that

j + p+ q + l − 1 < k + i(l − 1).

Moreover, k ≥ p+q and i ≥ 2, hence it is sufficient to prove that j+p+q+l−1 < p+q+2(l−1),
i.e.

(z) j < l − 1.

By assumption, (i, j) ∈ Em, therefore

j ≤ 1

r + s
(p+ q + l − 1)

(
1 + · · ·+ 1

(r + s)m

)
− ip+ q

r + s

and condition (z) is satisfied if

1

r + s
(p+ q + l − 1)

(
1 + · · ·+ 1

(r + s)m

)
< (l − 1) + 2

p+ q

r + s

which is clearly satisfied since r + s ≥ 2. Finally we obtain

0 = λAijC
p+q+l−1zi1z

j+p+q+l−1
2

and Aij = 0.
5) If (0, j) ∈ E0, i.e. j(r + s) ≤ p+ q + l − 1 then

α(p+ q) + β(r + s) = j + (p+ q + l − 1) > p+ q + l − 1

hence (α, β) 6∈ E0. If (0, j) ∈ Em \ Em−1,

(p+ q + l − 1)

(
1 +

1

r + s
+ · · ·+ 1

(r + s)m−1

)
< j(r + s)

≤ (p+ q + l − 1)

(
1 +

1

r + s
+ · · ·+ 1

(r + s)m

)
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and by (∗), the new (α, β) satisfies

α(p+ q) + β(r + s) = j + p+ q + l − 1

We want to check that

α(p+ q) + β(r + s) > (p+ q + l − 1)

(
1 +

1

r + s
+ · · ·+ 1

(r + s)m

)
This is equivalent to

j >
1

r + s

(
1 + · · ·+ 1

(r + s)m−1

)
(p+ q + l − 1)

or

j(r + s) >

(
1 + · · ·+ 1

(r + s)m−1

)
(p+ q + l − 1),

i.e. (0, j) 6∈ Em−1 which is true by assumption.
If k = (p + q) + β(r + s) = β′(r + s) then p + q is a multiple of r + s which is impossible,
therefore we have the unicity of (α, β). �

Lemma 5. 54 The linear system with coefficients in C[a1, . . . , al−1] and unknowns

bp+q+1, . . . , bp+q+l−1 and Aij , (i, j) ∈ E∞

is a Cramer system of order l − 1 + Card (E∞). More precisely, modulo M, its determinant is

∆ = Cp+q+1 · · ·Cp+q+l−1(λCp+q+l−1)CardE∞ 6= 0 mod M

and bk = Bk
∆ , k = p + q + 1, . . . , p + q + l − 1, Aij =

Bij
∆ , (i, j) ∈ E∞, with Bk, Bij ∈

C[a1, . . . , al−1].

Proof: We order the unknowns in the following way: First unknowns bp+q+1, . . . , bp+q+l−1, after
coefficients A0j 6= 0, with (0, j) ∈ E0 then (0, j) ∈ E1 \ E0, . . . (0, j) ∈ Em+1 \ Em, exhausting
E∞. Finally coefficients A1j , with j in the decreasing order. We have the same number of
equations and of unknowns, therefore we have a linear system of order l− 1 + Card (E∞). Let
M = (a1, . . . , al−1). In order to prove that we have a Cramer system it is sufficient to prove
that modulo M the determinant ∆ is nonzero. Therefore we consider the equation (I) modulo
M, i.e.
(IM)

ϕ1

(
ap0

{
1 +

z1z
l−1
2

a0

}p
zp+q2 , ar0

{
1 +

z1z
l−1
2

a0

}r
zr+s2

)

= λϕ1(z)
(
Cz2(1 + µ(z)

)p+q+l−1

+

p+q+l−1∑
k=p+q

bkC
kzk2 (1 + µ(z))k mod M

where, in the infinite product 1 + µ(z),

G(z1, z2) =
(

(z1z
l
2 + a0z2)pzq2 , (z1z

l
2 + a0z2)rzs2

)

=

(
ap0

(
1 +

z1z
l−1
2

a0

)p
zp+q2 , ar0

(
1 +

z1z
l−1
2

a0

)r
zr+s2

)
mod M

54



which provides

1 + µ(z) =

{
1 +

z1z
l−1
2

a0

} r
r+s

1 +
a
p+r(l−1)
0

(
1 +

z1z
l−1
2

a0

)p+r(l−1)

z
p+q+(r+s)(l−1)
2

a0


r

(r+s)2

· · ·

= 1 +
r

r + s

z1z
l−1
2

a0
+
ra
p+r(l−1)−1
0

(r + s)2
z
p+q+(r+s)(l−1)
2

+
r(p+ r(l − 1))a

p+r(l−1)−2
0

(r + s)2
z1z

p+q+(r+s+1)(l−1)
2 + · · · mod M

By construction, the diagonal of the matrix is

Cp+q+1, . . . , Cp+q+l−1, λCp+q+l−1, . . . , λCp+q+l−1

and the square submatrix, of order l − 1 corresponding to the unknowns

bp+q+i, i = 1, . . . , l − 1,

is diagonal because p+ q + (r + s)(l − 1) > p+ q + l − 1 and no term comes from (1 + µ(z)).
We shall show that after some linear combinations of the lines, we obtain an upper triangular
matrix, which yieds ∆ 6= 0.
Let (0, j) ∈ Em \ Em−1 (E−1 := ∅). Since A0,j 6= 0, the homogeneous part of bidegree
(0, j + p+ q + l − 1) is by lemma 53, 5)

Aαβa
pα+rβ
0 z

α(p+q)+β(r+s)
2 = λA0jz

j
2(Cz2)p+q+l−1, mod M

with (α, β) ∈ Em+1 \ Em, if such (α, β) exists, or

0 = λA0jz
j
2(Cz2)p+q+l−1, mod M

otherwise. A term biz
i
2(1 + µ(z))i has no part of homogeneous bidegree (0,m) because j + p+

q + l − 1 < 2(p + q) + (r + s)(l − 1). Therefore, with the chosen order on the unknowns, all
coefficients of the linear equation are over the diagonal of the matrix.
Remain homogeneous parts of bidegree (1, j + p+ q + l− 1) involving A1,j for j ≥ 1. We have

(1 + µ(z))i = 1 +
ir

r + s

z1z
l−1
2

a0
+
ira

p+r(l−1)−1
0

(r + s)2
z
p+q+(r+s)(l−1)
2

+
ir(p+ r(l − 1))a

p+r(l−1)−2
0

(r + s)2
z1z

p+q+(r+s+1)(l−1)
2 + · · · mod M

It is easy to check that for i ≥ p+ q,

i+ p+ q + (r + s+ 1)(l − 1) > j + (p+ q + l − 1),

therefore the only terms which may be involved in homogeneous part of bidegree (1, j+ p+ q+
l − 1) are

biC
izi2

ir

r + s

z1z
l−1
2

a0
, where p+ q ≤ i ≤ p+ q + l − 1

therefore
i = j + p+ q.
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We have still to check that j ≤ l − 1. If (1, j) ∈ E0, then clearly j ≤ l − 1; if it is not the case,
(1, j) ∈ E1 \ E0 by lemma 53, 2). We have

(∗) l − 1 < j(r + s) ≤ p+ q

r + s
+ (l − 1)

(
1 +

1

r + s

)
and l ≥ 2. With (∗) and p+ q ≤ r+ s− 1 we check that the inequality j ≤ l− 1 is still fulfilled.

Now, there are two possibilities

1. There is no (α, β) such that α(p+ q) + β(r + s) = j + p+ q. Therefore

0 = λA1jz1z
j
2(Cz2)p+q+l−1 + bp+q+jC

p+q+jzp+q+j2

(p+ q + j)r

r + s

z1z
l−1
2

a0
mod M

The j-th equation (which gives the j-th line Lj of the matrix) is

0 = bp+q+jC
p+q+j mod M

therefore substracting (p+q+j)r
a0(r+s) Lj we remove the coefficient bp+q+jC

p+q+j (p+q+j)r
a0(r+s) which

was under the diagonal.

2. There exists (α, β) such that α(p + q) + β(r + s) = p + q + j. By lemma 53, 4), there is
at most two such coefficients (0, β) and (1, β′). By the choice of the ordering, and lemma
53, 2), A1,β′ > A1j and the coefficient of A1,β′

−ap+rβ
′−1

0 (p+ rβ′)

is over the diagonal.
Then mod M, the homogeneous part of bidegree (1, j + p+ q + l − 1) is

A0β a
rβ
0 rβ

z1z
l−1
2

a0
z
β(r+s)
2 +A1β′ a

p+rβ′

0 (p+ rβ′)
z1z

l−1
2

a0
z

(p+q)+β′(r+s)
2

= λA1jz1z
j
2(Cz2)p+q+l−1 + bp+q+jC

p+q+jzp+q+j2

(p+ q + j)r

r + s

z1z
l−1
2

a0

hence

A0β a
rβ−1
0 rβ +A1β′ a

p+rβ′−1
0 (p+ rβ′) = λA1jC

p+q+l−1 + bp+q+jC
p+q+j (p+ q + j)r

r + s

1

a0

where perhaps one of the coefficients A0β = 0 or A1β′ = 0. The j-th equation derived
from the homogeneous part of bidegree (0, p+ q + j) is

A0βa
rβ
0 +A1β′a

p+rβ′

0 = bp+q+jC
p+q+j mod M

and if A0β = 0, it remains to substract (p+q+j)r
a0(r+s) Lj to obtain a triangular matrix. If

A0β 6= 0, we have two coefficients under the diagonal: A0β and bp+q+j . However

rβ =
(p+ q + j)r

r + s

therefore substrating (p+q+j)r
a0(r+s) Lj = rβ

a0
Lj we remove both coefficients, obtaining the de-

sired upper triangular matrix.

56



We conclude that ∆ = Cp+q+1 · · ·Cp+q+l−1(λCp+q+l−1)CardE∞ 6= 0. The second member of
the Cramer system is nonzero and involves A10 and bp+q = 1, therefore solutions of the system
are rational fractions in variables a1, . . . , al−1. �

Consider the restriction of the equivalence relation defined by L. Since a0 is fixed we have
the extra condition A = B, hence by lemma 45,

a = (a1, . . . , al−1) ∼ a′ = (a′1, . . . , a
′
l−1)⇐⇒ a′i = Biai, for i = 1, . . . , l − 1, l +K,

where
Bk−1 = Br+s−1 = 1

and
Bσ = Bp+q+l−1 = Bp+q+(r+s)l−1 = 1.

Let ΠL : Cl−1 → Cl−1/L be the canonical mapping. Similarly, consider the restriction to Cl−1

of the equivalence relation of Favre germs given by lemma 23. If we fix λ then εp+q+l−1 = εσ = 1
and

b = (bp+q+1, . . . , bp+q+l−1) ∼ b′ = (b′p+q+1, . . . , b
′
p+q+l−1)⇐⇒ b′p+q+i = εibp+q+i, 1 ≤ i ≤ l − 1.

Let Π : Cl−1 → Cl−1/Zr+s−1 the corresponding canonical mapping. We see that the equivalence
relations a ∼ a′ and b ∼ b′ on Cl−1 are equal and ΠL = Π.

Lemma 5. 55 We choose a0 ∈ C? and ε such that εr+s−1 = 1. Let σ = p + q + l − 1 and
suppose that r + s− 1 does not divide l − d. Then there is a commutative diagram

Cl−1
fa0,ε- Cl−1

ΠL

? ?

Π

Cl−1/L Id- Cl−1/Zr+s−1

where
fa0,ε : Cl−1 → Cl−1

is an isomorphic polynomial mapping.

Proof: Both canonical mappings

ΠL : C? × Cl−1 → C? × Cl−1/L and Π : C? × Cl−1 → C? × Cl−1/Zr+s−1

are ramified covering with r+ s− 1 sheets. Let b = fa0,ε(a) and b′ = fa0,ε(a
′). By definition of

fa0,ε, Ga ∼ Fb and Ga′ ∼ Fb′ , therefore

a ∼ a′ ⇐⇒ Ga ∼ Ga′ ⇐⇒ Fb ∼ Fb′ ⇐⇒ b ∼ b′

and the diagram is commutative. The rational mapping fa0,ε is proper because if K ⊂ Cl−1 is
compact then

f−1
a0,ε(K) ⊂ f−1

a0,ε

(
Π−1

(
Π(K)

))
= Π−1

L

(
Π(K)

)
and f−1

a0,ε(K) is compact as Π−1
L

(
Π(K)

)
. The rational mapping fa0,ε is proper hence has no po-

lar set hence is polynomial. The image of fa0,ε contains an open set by corollary 3.16 therefore
fa0,ε is surjective. The ramified coverings have the same number of sheets hence fa0,ε is also
injective. �
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Lemma 5. 56 We choose a0 ∈ C? and ε such that εr+s−1 = 1. Let σ = p + q + l − 1 and
suppose that r+s−1 does not divide l−d. Then there is a proper surjective polynomial mapping

fa0,ε : Cl−1 −→ Cl−1

a = (a1, . . . , al−1) 7−→
(
bp+q+1(a), . . . , bp+q+l−1(a)

)
such that

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2

)r
zs2

)
is conjugated to the polynomial germ

F (z1, z2) =

λz1z
σ
2 +

σ∑
i=p+q

biz
i
2, z

r+s
2

 ,

where λ depends only on a0 by 5.51.

Proof: Denote by fa0,ε be the rational mapping of lemma 54.
1) For 1 ≤ j ≤ l − 1, the homogeneous part of bidegree (0, j + p+ q) is:

bp+q+jC
p+q+jzp+q+j2 +

j−1∑
j′=1

bp+q+j′C
p+q+j′zp+q+j

′

2 Pjj′(a1, . . . , aj−j′)z
j−j′
2

−
∑

(α,β)6=(1,0)
α(p+q)

+β(r+s)
≤p+q+j

Aαβa
αp+βr
0 z

α(p+q)+β(r+s)
2

〈{
1 +

1

a0

l−1∑
i=1

aiz
i
2

}αp+βr〉
(

0,p+q+j−α(p+q)−β(r+s)
)

= A10z
p+q
2

〈
ap0

{
1 +

1

a0

l−1∑
i=1

aiz
i
2

}p〉
(0,j)

− Cp+qzp+q2

〈
(1 + µ(z))

〉
(0,j)

After cancellation of zp+q+j2 and recalling that A10a
p
0 = Cp+q, we obtain the j-th equation

bp+q+jC
p+q+j +

j−1∑
j′=1

bp+q+j′C
p+q+j′Pjj′(a1, . . . , aj−j′)

−
∑

(α,β)6=(1,0)
α(p+q)

+β(r+s)
≤p+q+j

Aαβa
αp+βr
0

〈{
1 +

1

a0

l−1∑
i=1

aiz
i
2

}αp+βr〉
(

0,p+q+j−α(p+q)−β(r+s)
)

z
p+q+j−α(p+q)−β(r+s)
2

= Cp+q


〈{

1 + 1
a0

∑l−1
i=1 aiz

i
2

}p〉
(0,j)
−
〈

(1 + µ(z))p+q
〉

(0,j)

zj2


We show by decreasing induction that for j = 1, . . . , l − 1,

bp+q+j = bp+q+j(a1, . . . , aj) ∈ C[a1, . . . , aj ].
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For j = l − 1 there is nothing to prove. Let j ≥ 1 and suppose that

bp+q+l−1 ∈ C[a1, . . . , al−1], . . . , bp+q+j+1 ∈ C[a1, . . . , aj+1].

Then

• For j′ = 1, . . . , j − 1, Pjj′ ∈ C[a1, . . . , aj−1],

• Since p+ q + j − α(p+ q)− β(r + s) < j,〈{
1 + 1

a0

∑l−1
i=1 aiz

i
2

}αp+βr〉(
0,p+q+j−α(p+q)−β(r+s)

)
z
p+q+j−α(p+q)−β(r+s)
2

∈ C[a1, . . . , aj−1],

• Clearly〈{
1 + 1

a0

∑l−1
i=1 aiz

i
2

}p〉
(0,j)

zj2
=

〈{
1 + 1

a0

∑j
i=1 aiz

i
2

}p〉
(0,j)

zj2
∈ C[a1, . . . , aj ]

• From the definition of µ,

〈
(1 + µ(z))p+q

〉
(0,j)

zj2
=

〈{
1 + 1

a0

∑j
i=1 aiz

i
2

} r(p+q)
r+s · · ·

〉
zj2

∈ C[a1, . . . , aj ]

Therefore modulo Mj−1 =
(
a1, . . . , aj−1

)
,

bp+q+jC
j =

δ aj
(r + s)a0

and there exists a polynomial Rj(a1, . . . , aj−1) ∈ C[a1, . . . , aj−1] without constant term such
that

(T ) bp+q+j = bp+q+j(a1, . . . , aj) =
δ aj

Cj(r + s)a0
+Rj(a1, . . . , aj−1).

2) We show now that the polynomial mapping

f : Cl−1 −→ Cl−1

(a1, . . . , al−1) 7−→
(
bp+q+1(a1), . . . , bp+q+j(a1, . . . , aj), . . . , bp+q+l−1(a1, . . . , al−1)

)
is proper, hence surjective. Let K ⊂ Cl−1 be a compact subset and (a1, . . . , al−1) ∈ f−1(K).
We have to show that for any j = 1, . . . , l− 1, aj is uniformly bounded. We show this property
by an increasing induction on j ≥ 1. For j = 1,

(R1) bp+q+1C =
δ a1

(r + s)a0

and a1 is bounded since bp+q+1 is. Suppose that j ≥ 2 and that a1, . . . , aj−1 are uniformly
bounded. Then aj is uniformly bounded since it is the cas of Rj(a1, . . . , aj−1) and bp+q+j .
�

B) We suppose that l − d = K(r + s − 1) and λ = 1 i.e. there are non trivial
global vector fields. We have

l +K = d+Kk(S), σ = p+ q + l − 1 = (k(S)− 1)(K + 1),
σk(S)

k(S)− 1
= k(S)(K + 1).
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We denote by (∑)
:=

(
l−1∑
i=1

aiz
i
2 + al+K z

l+K
2 + z1z

l−1
2

)
the equation (I) is now

(I)


ϕ1

(
ap0

{
1 +

1

a0

(∑)}p
zp+q2 , ar0

{
1 +

1

a0

(∑)}r
zr+s2

)

= λϕ1(z)
(
Cz2(1 + µ(z)

)σ
+

σ∑
i=p+q

bi

(
Cz2(1 + µ(z))

)i
+ c
(
Cz2(1 + µ(z))

) σk
k−1

If m ≥ σ
k−1 , then (0,m) 6∈ E∞, in fact

m(r + s) ≥ σk

k − 1
= (p+ q + l − 1)

r + s

r + s− 1
,

therefore the coefficients al+K and c doesn’t occur in the previous calculations and we obtain
by similar arguments a polynomial mapping fa0,ε.

Lemma 5. 57 Suppose l = d+K(r + s− 1). Let M = (a1, . . . , al−1) and (i, j) such that〈
Aija

pi+rj
0

{
1 + 1

a0

(∑l−1
m=1 amz

m
2 + al+Kz

l+K
2 + z1z

l−1
2

)}pi+rj
z
i(p+q)+j(r+s)
2

〉
(0, σkk−1 )

6= 0,

mod M

then, (i, j) = (1, 0) or (i, j) = (0, σ
k−1 ). More precisely homogeneous part of bidegree (0, σk

k−1 ) is

cC
σk
k−1 = A10 pa

p−1
0 al+K +A0, σ

k−1
Cσ(1− λ) mod M.

In particular if there are global vector fields, i.e. λ = 1,

cC
σk
k−1 = A10 pa

p−1
0 al+K mod M.

Proof: 1) If (i, j) ∈ E∞, then i(p+ q) + j(r + s) < σk
k−1 and i ≤ 1.

• Case i = 1: Since

l +K + (p+ q) + j(r + s) =
σk

k − 1
+ jk ≥ σk

k − 1

we have equality if j = 0 hence (i, j) = (1, 0).

• Case i = 0: then 1 ≤ j ≤ σ
k−1 and mod M,〈

A0ja
rj
0

{
1 +

al+Kz
l+K
2

a0

}rj
z
j(r+s)
2

〉
(0, σkk−1 )

6= 0,mod M

In the left member the possible powers of z2 are of the form α(l + K) + jk with α ≥ 0
and j ≥ 1 such that

α(l +K) + jk =
σk

k − 1
.

Since α(l+K) + jk = (d+Kk)α+ jk, we derive that α ≥ 1 is impossible, therefore α = 0
and j = σ

k−1 .
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2) From 1) we deduce that there exists a polynomial P in variables a1, . . . , al−1 such that the

coefficients of z
σk
k−1

2 in (I) give the equality

A10 pa
p−1
0 al+K +A0, σ

k−1
a
σr
k−1

0 = λA0 σ
k−1

Cσ + cC
σk
k−1 + P (a1, . . . , al−1).

By equation (5),

a
σr
k−1

0 − λCσ = Cσ(λ− 1)

which gives the result. �

Lemma 5. 58 If l − d = K(r + s− 1) and λ = 1, there is a bijective polynomial mapping

ga0,ε : Cl−1 × C −→ Cl−1 × C
a = (a1, . . . , al−1, al+K) 7−→

(
bp+q+1(a), . . . , bp+q+l−1(a), c(a)

)
such that

G(z1, z2) =

((
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)p
zq2 ,

(
z1z

l
2 +

l−1∑
i=0

aiz
i+1
2 + al+Kz

2l+K
2

)r
zs2

)
is conjugated to the polynomial germ

F (z1, z2) =

λz1z
σ
2 +

σ∑
k=p+q

bkz
k
2 + cz

σk(S)
k(S)−1

2 , zr+s2

 .

Proof: We have a bijective polynomial map

fa0,ε : Cl−1 → Cl−1, a 7→ b = fa0,ε(a).

From lemma 5.57, when a = (a1, . . . , al−1) is fixed and al+K ∈ C, the mapping c : C → C,

al+K 7→ c = c(al+K) = C−
σk
k−1A10 pa

p−1
0 al+K is linear hence bijective.

�

Corollary 5. 59 Any surface with GSS with one tree admits a special birational structure.

Corollary 5. 60 The intersection A := Aut(C2, H, 0) ∩ Φ is the trivial group or a group iso-
morphic to (C,+). Moreover

• if k − 1 does not divide s = p+ q + l − 1, the canonical mapping

g : G/A = G(p, q, r, s, l)/A→ Uk,s,m1/Zk−1

to the Oeljeklaus-Toma coarse moduli space of marked surfaces (S,C0) with one tree

Uk,s,m1/Zk−1 = C? × Cl−1/Zk−1

is isomorphic and there is a polynomial lifting

(λ, b) : C? × Cl−1 → C? × Cl−1

which is a covering such that

C? × Cl−1 (λ, b)- C? × Cl−1

? ?
G/A g- Uk,s,m1

/Zk−1
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is commutative,

• if k − 1 divides s = p+ q + l − 1, we have similar results for

Uλ6=0,c=0
k,s,m1

/Zk−1 and Uλ=1
k,s,m1

/Zk−1.

Corollary 5. 61 Let SJ,σ → BJ be a large family with σ = Id. Let TJ,σ the hypersurface where
cocycles [θi] and [µi] are not independent. Then for each stratum BJ,M , the trace TJ,σ ∩BJ,M
on BJ,M is equal to the inverse image of the ramification set by the lift of the canonical mapping
i.e.

• If k − 1 does not divide s,

TJ,σ ∩BJ,M = (λ, b)−1(Tk,s,m1),

• If k − 1 divides s
TJ,σ ∩BJ,M = (λ, b)−1(Tλ 6=1,c=0

k,s,m1
).

In particular in BJ there is no curve over which the surfaces are isomorphic.

6 Appendix

6.1 On logarithmic deformations of surfaces with GSS, by Laurent
Bruasse

The results contained in this section is a not yet published part of the thesis [3]. Notations are
those of [4] and [9].

Let F be a reduced foliation on a compact complex surface S. We denote by TF (resp. NF )
the tangent (resp. normal) line bundle to F .
Let p be a singular point of the foliation; in a neighbourhood of p endowed with a coordinate
system (z, w) in which p = (0, 0), F is defined by a holomorphic vector field

θ(z, w) = A(z, w)
∂

∂z
+B(z, w)

∂

∂w
.

Let J(z, w) be the jacobian matrix of the mapping (A,B). Baum-Bott [1] and Brunella [4] have
introduced the following two indices:

Det(p,F) = Res(0,0)
det J(z, w)

A(z, w)B(z, w)
dz ∧ dw

Tr(p,F) = Res(0,0)

(
tr J(z, w)

)2
A(z, w)B(z, w)

dz ∧ dw

where Res(0,0) is the residue at (0, 0) (see [15] p649). We denote by S(F) the singular set of
F , it is a finite set of points, and let

DetF :=
∑

p∈S(F)

Det(p,F), T r(F) :=
∑

p∈S(F)

Tr(p,F).

Proposition 6. 62 (Baum-Bott formulas, [1],[4]) We have

DetF = c2(S)− c1(TF ).c1(S) + c1(TF )2,

T r(F) = c1(S)2 − 2c1(TF ).c1(S) + c1(TF )2.
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By [9], if S is a minimal compact complex surface with GSS, then

DetF = n, Tr(F) = 2n− σn(S).

Proposition 6. 63 Let S be a minimal surface containing a GSS with n = b2(S) ≥ 1 and
tr(S) = 0. If F is a reduced foliation on S, then

h1(S, TF ) =

{
3n− σn(S) if h0(S,Θ) = 0
3n− σn(S) + 1 if h0(S,Θ) = 1

If there is no non-trivial global vector fields this integer is precisely the number of generic
blowing-ups.

Proof: By Riemann-Roch formula

h0(TF )− h1(TF ) + h2(TF ) = χ(S) + 1
2

(
c1(TF )2 − c1(TF )c1(K)

)
= c1(TF )2 = σn(S)− 3n

since

• by the first Baum-Bott formula c1(TF ).c1(S) = c1(TF )2 and

• by the second and the previous observation c1(TF )2 = −Tr(F) + c1(S)2 = σn(S)− 3n.

Suppose first that S is of intermediate type. Two cases occur

h0(TF ) =

{
0 if h0(S,Θ) = 0
1 if not

Moreover, by Serre duality h2(TF ) = h0(K ⊗ T ?F ) and

c1(K).
(
c1(K)− c1(TF )

)
= c1(S)2 + c1(S).c1(TF ) = −n+ (σn(S)− 3n) = −4n+ σn(S) < 0

Let ei, i = 0, . . . , n − 1 be the Donaldson classes in H2(S,Z) which trivialize the negative

intersection form. In H2(S,Z), c1(K) =
∑n−1
i=0 ei and c1(K) − c1(TF ) =

∑n−1
i=0 aiei. Since

c1(K).
(
c1(K)− c1(TF )

)
< 0 we have

∑
i ai > 0 therefore h0(K⊗T ?F ) = 0 by [24] Lemma (2.3).

If S is a Inoue-Hirzebruch surface, there are two foliations, each defined by a twisted vector
field θ ∈ H0(S,Θ⊗Lλ), with λ an irrational quadratic number (see [9]), hence TF = L1/λ. We
have −K = D or −K⊗2 = 2D and there is no topologically trivial divisor, therefore

h0(L1/λ) = 0, and h2(L1/λ) = h0(K ⊗ Lλ) = 0.

We conclude by Riemann-Roch theorem that

h1(TF ) = h1(L1/λ) = 0 = 3n− σn(S)

which is the annouced result. �

We have a canonical injection 0
i→ TF → Θ(−LogD). The aim of the following proposition

is to compare logarithmic deformations and deformations which respect the foliation:

Proposition 6. 64 There exists an exact sequence of sheaves of OS-Modules

(♠) 0→ TF
i→ Θ(−LogD)→ NF ⊗O(−D)→ 0.
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Proof: Let U = (Ui) be a finite covering by open sets endowed with holomorphic 1-forms ωi
defining the foliation F . On each open set Ui we consider the morphism

j : Θ(−LogD)|Ui −→ NF ⊗OS(−D)|Ui
θ 7−→ ωi(θ)

Since θ is tangent to D, ωi(θ) vanishes on D, therefore the morphism is well defined on Ui.
Moreover, by definition, the normal bundle NF is defined by the cocycle (gij)ij = (ωi/ωj)ij ∈
H1(U ,O?), therefore j is well defined on S and its kernel is clearly Im i. It remains to check
that j is surjective: outside D it is obvious since the foliation has singular points only at the
intersection of two curves and we have the exact sequence

0→ TF
i→ Θ(−LogD)|S\D = Θ|S\D → NF → 0.

Let x ∈ D, fx ∈ NF,x ⊗O(−D)x and U an open neighbourhood of x on which f is defined.

• If x is not at the intersection of two curves, let (z, w) be a coordinate system in which
D = {z = 0} and F defined by ω = a(z, w)dz + zb(z, w)dw. Since f vanishes on D,
f = zg. Let θ = zα(z, w) ∂∂z + β(z, w) ∂

∂w be a logarithmic vector field. We have to find α
and β such that

f(z, w) = zg(z, w) = ω(θ) = z(aα+ bβ)

i.e. g ∈ (a, b). The are solutions because x is not a singular point of the foliation hence a
is invertible at x.

• If x is at the intersection of two curves,

ω = wadz + zb dw, f = zwg and θ = zα(z, w)
∂

∂z
+ wβ(z, w)

∂

∂w
.

We have to solve g = aα + bβ. By [19] p171 (see also [9] p1528), the order of θ is one,
hence a or b is invertible and g ∈ (a, b).

�

Let S be a minimal compact complex surface containing a GSS with n = b2(S) ≥ 1 and
tr(S) = 0. If S is not a Inoue-Hirzebruch surface then S admits a unique holomorphic foliation
F [9] p1540 given by a d-closed section of H0(S,Ω1(LogD)⊗Lk(S)). If S is a Inoue-Hirzebruch
surface, it admits exactly two foliations defined by twisted vector fields.
The exact sequence (♠) yields

0→ H1(S, TF )→ H1(S,Θ(LogD))→ H1(S,NF ⊗O(−D))→ H2(S, TF )

In fact, if S is not a Inoue-Hirzebruch surface, F is unique, thence Ω1 contains a unique non-
trivial coherent subsheaf which is O(−D) ⊗ L1/k. As N?

F is another, NF = O(D) ⊗ Lk and
H0(S,NF ⊗ O(−D)) = H0(S,Lk) = 0 because k 6= 1. We have also h2(S,NF ⊗ O(−D)) =
h2(S,Lk) = h0(S,K ⊗L1/k) = 0. By Riemann-Roch theorem, h1(S,NF ⊗O(−D)) = 0 and we
obtain the isomorphism

0→ H1(S, TF )→ H1(S,Θ(LogD))→ 0

If S is a Inoue-Hirzebruch surface NF = O(D)⊗ Lλ where λ is an irrationnal number and we
have the same conclusion.
With (63) we have proved:

Theorem 6. 65 Let S be a minimal compact complex surface containing a GSS with n =
b2(S) ≥ 1 and tr(S) = 0. Then:

h1(S,Θ(LogD)) = h1(S, TF ) =

{
3n− σn(S) if h0(S,Θ) = 0
3n− σn(S) + 1 if h0(S,Θ) = 1

In particular any logarithmic deformation keeps the foliation.
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Remark 6. 66 If tr(S) 6= 0, the theorem remains true by [8].

6.2 The torsion of some first derived direct image sheaves, by Andrei
Teleman[29]

Let B, P be complex manifolds π : P → B a proper holomorphic submersion and let E be a
holomorphic bundle on P . We are interested in the torsion of the sheaf R1π∗(E).

Let U ⊂ B be an open set and ϕ ∈ O(U) a non-trivial holomorphic function, and D :=
Z(ϕ) the associated effective divisor. We are interested in the sheaf Ker (mϕ) where mϕ :
R1π∗(E) U → R1π∗(E) U is the morphism defined by multiplication with ϕ.

By definition of the OB-module structure on R1π∗(E), the morphism mϕ is just R1π∗(mΦ),
where mΦ is the morphism of sheaves E π−1(U) → E π−1(U) defined by multiplication with the
function

Φ := π∗(ϕ) = ϕ ◦ π ∈ O(π−1(U)) .

Tensorizing by the locally free sheaf E the tautological exact sequence associated with the
divisor ∆ = Z(Φ), we obtain the short exact sequence

0 −→ E π−1(U)
mΦ−−−→ E π−1(U) −→ E∆ −→ 0 ,

which yields a long exact sequence

0 −→ π∗(E π−1(U))
π∗(mΦ)−−−−−→ π∗(E π−1(U)) −→ π∗(E∆) −→

−→ R1π∗(E π−1(U))
R1π∗(mΦ)−−−−−−−→ R1π∗(E π−1(U))→ · · · (9)

Denote by j and J the inclusions of D and ∆ in B and P respectively. The sheaf E∆ can
be written as J∗(E ∆). One has π ◦ J = j ◦ (π ∆), hence

π∗(E∆) = π∗(J∗(E ∆)) = (π ◦ J)∗(E ∆) = (j ◦ π ∆)∗(E ∆) = j∗ [(π ∆)∗(E ∆)] .

We consider the Brill-Noether locus

BN(E) := {x ∈ B| h0(Ex) 6= 0} ⊂ B .

Lemma 6. 67 Suppose that the divisor Z(ϕ) is reduced, and that BN(E)∩Z(ϕ) has codimen-
sion ≥ 2 at every point. Then

Ker (mϕ : R1π∗(E) U → R1π∗(E) U ) = 0 .

Proof: It suffices to prove that (π ∆)∗(E ∆) = 0. Let V ⊂ D := Z(ϕ) be an open set and W its
pre-image in ∆. One has

(π ∆)∗(E ∆)(V ) = H0(W, E ∆) .

Since W is reduced, the vanishing of a section s ∈ H0(W, E ∆) can be tested pointwise. But
the restriction of any such section to the dense set

W \ (π ∆)−1(BN(E))

vanish obviously (because it vanishes fibrewise). This shows H0(W, E ∆) = 0. �

Proposition 6. 68 Suppose that the Brill-Noether locus

BN(E) := {x ∈ B| h0(Ex) 6= 0} ⊂ B

has codimension ≥ 2 at every point. Then R1π∗(E) is torsion free.
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Proof: It suffices to prove that for every x ∈ B and for any irreducible germ ϕx ∈ Ox the
multiplication morphism mϕx : R1π∗(E)x → R1π∗(E)x by ϕx is injective. Choose U ⊂ B a
sufficiently small open neighborhood of x such that ϕ is defined on U and the effective divisor
Z(ϕ) ⊂ U is reduced1.

Then
Ker (mϕx) =

{
Ker (mϕ : R1π∗(E) U → R1π∗(E) U )

}
x

= 0

by Lemma 67 and the exact sequence (9).
�

Proposition 6. 69 Suppose that B 3 x 7→ h0(Ex) ∈ N is constant. Then R1π∗(E) is torsion
free.

Proof: Since the map B 3 x 7→ h0(Ex) ∈ N is constant, π∗(E) is locally free and commutes with
base change by Grauert’s theorems. Here we used the properness and the flatness of p (which
implies the flatness of E over B). This implies that the natural morphism

π∗(E π−1(U)) −→ π∗(E∆)

can be identified with the morphism π∗(E π−1(U)) −→ π∗(E π−1(U)) ⊗ OD, which is obviously

surjective. Therefore Ker (mϕ : R1π∗(E) U → R1π∗(E) U ) = {0} by the exact sequence (9). �

Theorem 6. 70 Suppose that

1. The fibers of π are connected surfaces.

2. The Brill-Noether locus

BN(E) := {x ∈ B| h0(Ex) 6= 0} ⊂ B

has codimension ≥ 2 at every point.

3. The map B 3 x 7→ h2(Ex) ∈ N is constant.

Then

1. R1π∗E is torsion free.

2. Let k denote the rank of R1π∗E and s = (s1, . . . , sk) be a system of sections in H0(B,R1π∗E)
such that s(x) is linearly independent in the fiber R1π∗E(x) for every x ∈ B \ BN(E).
Then s(x) is linearly independent in R1π∗E(x) for every x ∈ B.

Proof: The first statement follows from Proposition 68. For the second, denote by F the
torsion free sheaf R1π∗E on B. Since the map B 3 x 7→ h2(Ex) ∈ N is constant, it follows
by Grauert’s theorems that R2π∗E is locally free and that R2π∗E , R1π∗E commute with base
changes ([2] Theorem 3.4 p. 116). In particular the canonical morphisms Riπ∗E(x)→ Hi(Ex)
are isomorphisms for i = 1, 2, and for every x ∈ B.

By Riemann-Roch theorem and the third assumption it follows that the map B 3 x 7→
h1(Ex) is constant on B\BN(E), and the the sheaf R1π∗E is locally free on this open subset. The
system s defines a morphism σ : O⊕kB → F , which is a bundle isomorphism on B \BN(E). We
will show that σ(x) : Ck → F(x0) is injective for any x0 ∈ BN(E). Let x0 be such a point and
S ⊂ B be smooth locally closed surface such that S∩BN(E) = {x0}, let πS : PS := π−1(S)→ S
the restriced fibrations, and ES := E PS . Recalling that R1π∗ commutes with base changes we
put

FS := R1πS∗ ES = F S .

1Being reduced at a point is an open property. Indeed the set of points of a complex space X at which X is
reduced coincide with the complement of the support of the ideal sheaf of nilpotents of the structure sheaf OX . On
the other hand Z(ϕ) is reduced at x because it is irreducible at this point. Note that being irreducible at a point is
not an open property in complex analytic geometry.
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It suffices to prove that the restriction σS : O⊕kS → FS induces a monomorphism Ck →
FS(x0) = F(x0). By Lemma 71 below, it suffices to prove that the induced morphism σ∨S :

[FS ]∨x0
→
[
O⊕kx0,S

]∨
is surjective. Since S is a smooth surface and [FS ]∨ is reflexive on S, it will

also be free by [20] Corollary 5.20. The morphism [FS ]∨ →
[
O⊕kS

]∨
is just a morphism of rank

k locally free sheaves on S; ∧k(σ∨S ) is an isomorphism on S \ {x0}, so it will be an isomorphism
everywhere on S. Therefore σ∨S is an isomorphism on S.

�

Lemma 6. 71 Let (A,m) be a local ring with residual field K, and f : U → V an A-module
morphism, where U is free and finitely generated. If the the morphism f∨ : V ∨ → U∨ is
surjective, then the induced vector space morphism φ : Km ' U ⊗A K → V ⊗A K is injective.

Proof: Let x ∈ Kerφ, and let u be a lift of x in U . The condition φ(x) = 0 becomes f(u) ∈ mV .
Since f∨ is surjective, one obtains for every u ∈ U∨ an element v ∈ V ∨ such that f∨(v) = u, so

〈u, u〉 = 〈f∨(v), u〉 = 〈v, f(u)〉 ∈ m ,

In particular the components ui of u with respect to a basis in U belong all to m, so u ∈ mU .
�

Corollary 6. 72 Suppose that

1. The fibers of π are connected surfaces.

2. The Brill-Noether locus

BN(E) := {x ∈ B| h0(Ex) 6= 0} ⊂ B

has codimension ≥ 2 at every point.

3. The map B 3 x 7→ h2(Ex) ∈ N is constant

4. The rank of the coherent sheaf R1π∗E is k and there exists a system of global sections s =
(s1, . . . , sk) in H0(B,R1π∗E) such that s(x) is linearly independent in the fiber R1π∗E(x)
for every x ∈ B \BN(E)

Then R1π∗E is free of rank k.

Proof: By the previous theorem, R1π∗E is torsion free of rank k. By [20] Prop 5.14, there is a
covering of B by open sets U such that there exists an injective morphism αU : R1π∗E|U → OkU .

Besides, the global sections s define a sheaf morphism σ : OkB → R1π∗E by

σ(V ) : OkB(V ) → R1π∗E(V )

(f1, . . . , fk) 7→
∑k
i=1 fisi

for every open set V ⊂ B. Therefore ϕ := α ◦ σ|U : OkU → OkU is an injective morphism outside
an at least 2-codimensional analytic set. Therefore ϕ is an isomorphism, the exact sequence

0→ OkU
σ→ R1π∗E|U → Q→ 0

has a retraction r = ϕ−1 ◦ σ : R1π∗E|U → OkU therefore splits. Since Q is a torsion sheaf we

deduce from R1π∗E|U ' OkU ⊕Q that Q = 0, hence R1π∗E is locally free. �
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6.3 Infinitesimal logarithmic deformations: the hard part

We give in this section the proof of proposition 3.17.
Since σ(0) = On−1 is the intersection of two transversal rational curves which are contracted
by F , there is a conjugation by a linear map ϕ (in particular birational) such that ϕ−1Fϕ =
F ′ = Π′σ′, satisfies

(S)
∂σ′1
∂z2

(0) =
∂σ′2
∂z1

(0) = 0.

It means that σ′−1(Cn−1) is tangent to z2 = 0 and the other curve is tangent to z1 = 0,
therefore their strict transforms meet the exceptional curve C0 respectively at {u′ = v′ = 0}
and {u = v = 0}.
Therefore in the following computations we shall suppose that the condition (S) is satisfied.
Let Π′′ = Πl ◦ Πl+1 ◦ · · · ◦ Πn−1 be the composition of blowing-ups at the intersection of two
curves and of Πl, then it is the composition of mappings (u, v) 7→ (uv, v) or (u′, v′) 7→ (v′, u′v′),
and of Πl(u

′, v′) = (v′ + al−1, u
′v′), hence

Π′′(x, y) = (xpyq + al−1, x
rys)

where

(
p q
r s

)
is the composition of matrices

(
1 1
0 1

)
or

(
0 1
1 1

)
, the last one being of

the second type, therefore

det

(
p q
r s

)
= ±1.

We have

Π′′σΠ0(u0, v0) = Π′′
(
σ1(u0v0, v0), σ2(u0v0, v0)

)
=
(
σp1σ

q
2(u0v0, v0) + al−1, σ

r
1σ

s
2(u0v0, v0)

)
.

First case: there are at least two singular sequences, then

1 ≤ p ≤ r, 1 ≤ q ≤ s, p+ q < r + s.

The jacobian is

D(Π′′σΠ0)(u0, v0) =

 v0σ
p−1
1 σq−1

2 (u0v0, v0)P (u0, v0) σp−1
1 σq−1

2 (u0v0, v0)Q(u0, v0)

v0σ
r−1
1 σs−1

2 (u0v0, v0)R(u0, v0) σr−1
1 σs−1

2 (u0v0, v0)S(u0, v0)


where

P (u, v) = pσ2(uv, v)∂1σ1(uv, v) + qσ1(uv, v)∂1σ2(uv, v),

Q(u, v) = pσ2(uv, v)
(
u∂1σ1(uv, v) + ∂2σ1(uv, v)

)
+ qσ1(uv, v)

(
u∂1σ2(uv, v) + ∂2σ2(uv, v)

)
R(u, v) = rσ2(uv, v)∂1σ1(uv, v) + sσ1(uv, v)∂1σ2(uv, v)

S(u, v) = rσ2(uv, v)
(
u∂1σ1(uv, v) + ∂2σ1(uv, v)

)
+ sσ1(uv, v)

(
u∂1σ2(uv, v) + ∂2σ2(uv, v)

)
For i = 1, . . . , l − 1 we have also

DΠi(ui, vi) =

(
vi ui
0 1

)
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In the local chart (ui, vi) containing Oi, for i = 0, . . . , l− 1, Xi is tangent to Ci = {vi = 0},
hence we have

Xi(ui, vi) =

 Ai(ui, vi)

viBi(ui, vi)

 .

For i = 0, . . . , l − 2, we have at the point

(ui, vi) = Πi+1(ui+1, vi+1) = (ui+1vi+1 + ai, vi+1), Ai(ui+1vi+1 + ai, vi+1)

vi+1Bi(ui+1vi+1 + ai, vi+1)

−
 vi+1 ui+1

0 1

 Ai+1(ui+1, vi+1)

vi+1Bi+1(ui+1, vi+1)

 =

 αi

0


For i = l − 1, at the point

(ul−1, vl−1) = Π′′ ◦ σ ◦Π0(u0, v0) = Π′′
(
σ1(u0v0, v0), σ2(u0v0, v0))

)
=

(
σp1σ

q
2(u0v0, v0) + al−1, σ

r
1σ

s
2(u0v0, v0)

)
,

 Al−1(Π′′σΠ0(u0, v0))

σr1σ
s
2(u0v0, v0)Bl−1(Π′′σΠ0(u0, v0))

−D(Π′′σΠ0)(u0, v0)

 A0(u0, v0)

v0B0(u0, v0)

 =

 αl−1

0


Equivalently, we obtain

For i = 0, . . . , l − 2,

(Ii) Ai(ui+1vi+1 + ai, vi+1)− vi+1 {Ai+1(ui+1, vi+1) + ui+1Bi+1(ui+1, vi+1)} = αi

(IIi) Bi(ui+1vi+1 + ai, vi+1)−Bi+1(ui+1, vi+1) = 0

For i = l − 1, omitting subscripts,

(Il−1) Al−1(Π′′ ◦ σ ◦Π0(u, v))− vσp−1
1 σq−1

2 (uv, v)
{
P (u, v)A0(u, v) +Q(u, v)B0(u, v)

}
= αl−1

(IIl−1) σ1σ2(uv, v)Bl−1(Π′′ ◦ σ ◦Π0(u, v))− v
{
R(u, v)A0(u, v) + S(u, v)B0(u, v)

}
= 0

For i = 0, . . . , l − 1 and for vi+1 = 0 the equations (Ii) yield,

(1) Ai(ai, 0) = αi.

We put ui = ti + ai, i = 0, . . . , l − 1,

Ai(ui, vi) = Ai(ai, 0) +A′i(ti, vi) = Ai(ai, 0) +
∑
j+k>0

aij,kt
j
iv
k
i ,

Bi(ui, vi) = Bi(ai, 0) +B′i(ti, vi) = Bi(ai, 0) +
∑
j+k>0

bij,kt
j
iv
k
i .

For i = 0, . . . , l − 2, equations (IIi) give

(2) B := B0(a0, 0) = · · · = Bl−1(al−1, 0),
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(3) B′1(t1, 0) = · · · = B′l−1(tl−1, 0) = 0.

Replacing Ai and Bi by their expressions we have by (2),
For i = 0, . . . , l − 2,

(I ′i)
A′i
(
(ti+1 + ai+1)vi+1, vi+1

)
− vi+1

{
Ai+1(ai+1, 0) +A′i+1(ti+1, vi+1)

+(ti+1 + ai+1)
[
B +B′i+1(ti+1, vi+1)

]}
= 0

(II ′i) B′i
(
(ti+1 + ai+1)vi+1, vi+1

)
−B′i+1(ti+1, vi+1) = 0

(I ′l−1)


A′l−1(σp1σ

q
2(uv, v), σr1σ

s
2(uv, v))

−vσp−1
1 σq−1

2 (uv, v)
{
P (u, v)

[
A0(a0, 0) +A′0(t, v)

]
+Q(u, v)

[
B +B′0(t, v)

]}
= 0

(II ′l−1)


σ1σ2(uv, v)

[
B +B′l−1(σp1σ

q
2(uv, v), σr1σ

s
2(uv, v))

]
−v
{
R(u, v)

[
A0(a0, 0) +A′0(t, v)

]
+ S(u, v)

[
B +B′0(t, v)

]}
= 0

Now, from the equations I ′i and II ′i, 0 ≤ i ≤ l − 1, we show that some terms vanish. In
fact: For i = 0, . . . , l−2, we divide (I ′i) by vi+1, we set vi+1 = 0, we apply (3), and we compare
linear terms:

(4) a0
10 − a1

10 = · · · = al−2
10 − a

l−1
10 = B.

Equations (4) give

(5) a0
10 − al−1

10 − (l − 1)B = 0

For i = 0, . . . , l − 2, we divide (II ′i) by vi+1, we set vi+1 = 0, we apply (3):

(6) b010a1 + b001 − b101 = 0, b101 = · · · = bl−1
01 .

(7) b110 = · · · = bl−1
10 = 0.

Dividing (I ′l−1) by v2σp−1
1 σq−1

2 (uv, v), setting v = 0, recalling that ∂1σ2(0) = ∂2σ1(0) = 0
and cancelling the factor ∂1σ1(0)∂2σ2(0) 6= 0, we obtain

(8) al−1
1,0 (t+ a0)−

{
p
[
A0(a0, 0) +A′0(t, 0)

]
+ (p+ q)(t+ a0)

[
B +B′0(t, 0)

]}
= 0

Constant part of (8) is

(9c) a0a
l−1
10 − {pA0(a0, 0) + (p+ q)a0B} = 0

Linear part of (8) is

(9l) pa0
10 − al−1

10 + (p+ q)B + (p+ q)a0b
0
10 = 0

Dividing (II ′l−1) by v2, setting v = 0 and cancelling the factor term ∂1σ1(0)∂2σ2(0) 6= 0, we
obtain

(10) (t+ a0)B − r
[
A0(a0, 0) +A′0(t, 0)

]
− (r + s)(t+ a0)

[
B +B′0(t, 0)

]
= 0
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Constant part of (10) is

(11c) rA0(a0, 0) + (r + s− 1)a0B = 0

Linear part of (10) is

(11l) ra0
10 + (r + s− 1)B + (r + s)a0b

0
10 = 0

The determinant of the linear system (5), (9c), (9l), (11c) and (11l) with unknowns a0
10, al−1

10 ,
A0(a0, 0), B and b010 is

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 −(l − 1) 0

0 a0 −p −(p+ q)a0 0

p −1 0 (p+ q) (p+ q)a0

0 0 r (r + s− 1)a0 0

r 0 0 (r + s− 1) (r + s)a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a2

0(ps− qr)
{

(ps− qr) + 1− (p+ s)− rl
}
6= 0

Therefore, by (4), (6) and (7)

(12) a0
10 = · · · = al−1

10 = B = 0, b001 = · · · = bl−1
01 and b010 = · · · = bl−1

10 = 0.

Moreover we obtain

(13) α0 = A0(a0, 0) = 0.

Second case: there is only one singular seqence sm, m ≥ 1, then(
p q
r s

)
=

(
0 1
1 1

)(
1 1
0 1

)m−1

=

(
0 1
1 m

)
Π′′σΠ0(u0, v0) =

(
σ2(u0v0, v0) + al−1, σ1σ

m
2 (u0v0, v0)

)
D
(
Π′′σΠ0

)
(u, v) =

 vP (u, v) Q(u, v)

vσm−1
2 (uv, v)R(u, v) σm−1

2 (uv, v)S(u, v)


where 

P (u, v) = ∂1σ2(uv, v)

Q(u, v) = u∂1σ2(uv, v) + ∂2σ2(uv, v)

R(u, v) = σ2∂1σ1(uv, v) +mσ1∂1σ2(uv, v)

S(u, v) = σ2(uv, v)
(
u∂1σ1(uv, v) + ∂2σ1(uv, v)

)
+mσ1(uv, v)

(
u∂1σ2(uv, v) + ∂2σ2(uv, v)

)
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The new equations are

(I ′l−1) A′l−1(σ2(uv, v), σ1σ
m
2 (uv, v))

−v
{
P (u, v)[A0(a0, 0) +A′0(t, v)] +Q(u, v)[B +B′0(t, v)]

}
= 0

(II ′l−1) σ1σ2(uv, v)
(
B +B′l−1(σ2(uv, v), σ1σ

m
2 (uv, v))

)
−v
{
R(u, v)[A0(a0, 0) +A′0(t, v)] + S(u, v)[B +B′0(t, v)]

}
= 0

The end of the proof follows the same lines than in the first case. Details are left to the
reader.

Remark 6. 73 By induction it is possible to show that for any k < r + s− (p+ q), a similar
Cramer system may by defined and that αk = 0. However, it is not possible to achieve the proof
in this way because when k = r+s−(p+q) a new unknown appears. This difficulty is explained
by the fact that in general there is a relation among the θi’s, as we shall see in the sequel.
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