Uncertainty principles for integral operators - Archive ouverte HAL
Article Dans Une Revue Studia Mathematica Année : 2014

Uncertainty principles for integral operators

Résumé

The aim of this paper is to prove new uncertainty principles for an integral operator $\tt$ with a bounded kernel for which there is a Plancherel theorem. The first of these results is an extension of Faris's local uncertainty principle which states that if a nonzero function $f\in L^2(\R^d,\mu)$ is highly localized near a single point then $\tt (f)$ cannot be concentrated in a set of finite measure. The second result extends the Benedicks-Amrein-Berthier uncertainty principle and states that a nonzero function $f\in L^2(\R^d,\mu)$ and its integral transform $\tt (f)$ cannot both have support of finite measure. From these two results we deduce a global uncertainty principle of Heisenberg type for the transformation $\tt$. We apply our results to obtain a new uncertainty principles for the Dunkl and Clifford Fourier transforms.
Fichier principal
Vignette du fichier
IT120604.pdf (238.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00704805 , version 1 (06-06-2012)

Identifiants

Citer

Saifallah Ghobber, Philippe Jaming. Uncertainty principles for integral operators. Studia Mathematica, 2014, 220, pp.197--220. ⟨hal-00704805⟩
209 Consultations
717 Téléchargements

Altmetric

Partager

More