Algorithms based on sparsity hypotheses for robust estimation of the noise standard deviation in presence of signals with unknown distributions and concurrences - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2010

Algorithms based on sparsity hypotheses for robust estimation of the noise standard deviation in presence of signals with unknown distributions and concurrences

Résumé

Inmany applications, d-dimensional observations result fromthe randompresence or absence of randomsignals in independent and additivewhite Gaussian noise. An estimate of the noise standard deviation can then be very useful to detect or to estimate these signals, especially when standard likelihood theory cannot apply because of too little prior knowledge about the signal probability distributions. Recent results and algorithms have then emphasized the interest of sparsity hypotheses to design robust estimators of the noise standard deviation when signals have unknown distributions. As a continuation, the present paper introduces a new robust estimator for signals with probabilities of presence less than or equal to one half. In contrast to the standard MAD estimator, it applies whatever the value of d. This algorithm is applied to image denoising by wavelet shrinkage as well as to non-cooperative detection of radiocommunications.In both cases, the estimator proposed in the present paper outperforms the standard solutions used in such applications and based on the MAD estimator. The Matlab code corresponding to the proposed estimator is available at http://perso.telecom-bretagne.eu/pastor
Fichier principal
Vignette du fichier
RR_2010_01-sc_complet.pdf (417.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00703291 , version 1 (01-06-2012)

Identifiants

  • HAL Id : hal-00703291 , version 1

Citer

Dominique Pastor, François-Xavier Socheleau. Algorithms based on sparsity hypotheses for robust estimation of the noise standard deviation in presence of signals with unknown distributions and concurrences. [Research Report] Dépt. Signal et Communications (Institut Mines-Télécom-Télécom Bretagne-UEB); Laboratoire en sciences et technologies de l'information, de la communication et de la connaissance (UMR CNRS 6285 - Télécom Bretagne - Université de Bretagne Occidentale - Université de Bretagne Sud). 2010, pp.31. ⟨hal-00703291⟩
176 Consultations
92 Téléchargements

Partager

More