Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm - Archive ouverte HAL Access content directly
Journal Articles Journal of Cryptology Year : 2013

Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm

Jean-Charles Faugère
Louise Huot
  • Function : Correspondent author
  • PersonId : 925468

Connectez-vous pour contacter l'auteur
Guénaël Renault

Abstract

In 2004, an algorithm is introduced to solve the DLP for elliptic curves defined over a non prime finite field $\F_{q^n}$. One of the main steps of this algorithm requires decomposing points of the curve $E(\F_{q^n})$ with respect to a factor base, this problem is denoted PDP. In this paper, we will apply this algorithm to the case of Edwards curves, the well-known family of elliptic curves that allow faster arithmetic as shown by Bernstein and Lange. More precisely, we show how to take advantage of some symmetries of twisted Edwards and twisted Jacobi intersections curves to gain an exponential factor \(2^{\omega (n-1)}\) to solve the corresponding PDP where $\omega$ is the exponent in the complexity of multiplying two dense matrices. Practical experiments supporting the theoretical result are also given. For instance, the complexity of solving the ECDLP for twisted Edwards curves defined over $\F_{q^5}$, with \(q\approx2^{64}\), is supposed to be $\sim$ $2^{160}$ operations in $E(\F_{q^5})$ using generic algorithms compared to \(2^{130}\) operations (multiplication of two $32$-bits words) with our method. For these parameters the PDP is intractable with the original algorithm. The main tool to achieve these results relies on the use of the symmetries and the quasi-homogeneous structure induced by these symmetries during the polynomial system solving step. Also, we use a recent work on a new algorithm for the change of ordering of Gröbner basis which provides a better heuristic complexity of the total solving process.
Fichier principal
Vignette du fichier
FGHR.pdf (364.44 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00700555 , version 1 (23-05-2012)
hal-00700555 , version 2 (29-03-2013)
hal-00700555 , version 3 (18-06-2013)

Identifiers

Cite

Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, Guénaël Renault. Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm. Journal of Cryptology, 2013, pp.1-40. ⟨10.1007/s00145-013-9158-5⟩. ⟨hal-00700555v3⟩
728 View
797 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More