Homotopical rigidity of polygonal billiards
Abstract
Consider two $k$-gons $P$ and $Q$. We say that the billiard flows in $P$ and $Q$ are homotopically equivalent if the set of conjugacy classes in the fundamental group of $P$ which contain a periodic billiard orbit agrees with the analogous set for $Q$. We study this equivalence relationship and compare it to the equivalence relations, order equivalence and code equivalence, introduced in \cite{BT1,BT2}. In particular we show if $P$ is a rational polygon, and $Q$ is homotopically equivalent to $P$, then $P$ and $Q$ are similar, or affinely similar if all sides of $P$ are vertical and horizontal.
Origin : Files produced by the author(s)
Loading...