On vanishing coefficients of algebraic power series over fields of positive characteristic - Archive ouverte HAL
Article Dans Une Revue Inventiones Mathematicae Année : 2012

On vanishing coefficients of algebraic power series over fields of positive characteristic

Boris Adamczewski
Jason P. Bell
  • Fonction : Auteur
  • PersonId : 925275

Résumé

Let $K$ be a field of characteristic $p>0$ and let $f(t_1,\ldots ,t_d)$ be a power series in $d$ variables with coefficients in $K$ that is algebraic over the field of multivariate rational functions $K(t_1,\ldots ,t_d)$. We prove a generalization of both Derksen's recent analogue of the Skolem--Mahler--Lech theorem in positive characteristic and a classical theorem of Christol, by showing that the set of indices $(n_1,\ldots,n_d)\in \mathbb{N}^d$ for which the coefficient of $t_1^{n_1}\cdots t_d^{n_d}$ in $f(t_1,\ldots ,t_d)$ is zero is a $p$-automatic set. Applying this result to multivariate rational functions leads to interesting effective results concerning some Diophantine equations related to $S$-unit equations and more generally to the Mordell--Lang Theorem over fields of positive characteristic.
Fichier principal
Vignette du fichier
ZeroSets_Final.pdf (367.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00698689 , version 1 (17-05-2012)

Identifiants

Citer

Boris Adamczewski, Jason P. Bell. On vanishing coefficients of algebraic power series over fields of positive characteristic. Inventiones Mathematicae, 2012, 187, pp.343--393. ⟨10.1007/s00222-011-0337-4⟩. ⟨hal-00698689⟩
228 Consultations
199 Téléchargements

Altmetric

Partager

More