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ON VANISHING COEFFICIENTS OF ALGEBRAIC

POWER SERIES OVER FIELDS OF POSITIVE

CHARACTERISTIC

by

Boris Adamczewski & Jason P. Bell

Abstract. — Let K be a field of characteristic p > 0 and let f(t1, . . . , td) be
a power series in d variables with coefficients in K that is algebraic over the
field of multivariate rational functions K(t1, . . . , td). We prove a generaliza-
tion of both Derksen’s recent analogue of the Skolem–Mahler–Lech theorem
in positive characteristic and a classical theorem of Christol, by showing that
the set of indices (n1, . . . , nd) ∈ Nd for which the coefficient of tn1

1 · · · t
nd

d in
f(t1, . . . , td) is zero is a p-automatic set. Applying this result to multivari-
ate rational functions leads to interesting effective results concerning some
Diophantine equations related to S-unit equations and more generally to the
Mordell–Lang Theorem over fields of positive characteristic.
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1. Introduction

The Skolem–Mahler–Lech theorem is a celebrated result which describes
the set of solutions in n to the equation a(n) = 0, where a(n) is a sequence
satisfying a linear recurrence over a field of characteristic 0. We recall that if
K is a field and a is a K-valued sequence, then a satisfies a linear recurrence
over K if there exists a natural numberm and values c1, . . . , cm ∈ K such that

a(n) =

m∑

i=1

cia(n− i)

for all sufficiently large values of n. The zero set of the linear recurrence a is
defined by

Z(a) := {n ∈ N | f(n) = 0} .

The Skolem–Mahler–Lech theorem can then be stated as follows.

Theorem 1.1 (Skolem–Mahler–Lech). — Let a be a linear recurrence
over a field of characteristic 0. Then the set Z(a) is a union of a finite set
and a finite number of infinite arithmetic progressions.

This result was first proved for linear recurrences over the rational numbers
by Skolem [39]. It was next extended to linear recurrences over the algebraic
numbers by Mahler [28]. The version above was proven first by Lech [26] and
later by Mahler [29, 30]. More details about the history of this theorem can
be found in the book by Everest et al. [13].

Though the conclusion of the Skolem–Mahler–Lech theorem obviously holds
for linear recurrences defined over finite fields, this is not the case for infinite
fields K of positive characteristic. The simplest counter-example was given
by Lech [26]. Throughout this paper, p will denote a prime number. Let
K = Fp(t) be the field of rational functions in one variable over Fp. Let

a(n) := (1 + t)n − tn − 1 .

We can observe that the sequence a satisfies the recurrence

a(n) = (2 + 2t)a(n − 1)− (1 + 3t+ t2)a(n − 2) + (t+ t2)a(n − 3)

for n > 3, while
Z(a) = {1, p, p2, p3, . . .} .

More recently, Derksen [10] gave more pathological examples, which show
that the correct analogue of the Skolem–Mahler–Lech theorem in positive char-
acteristic is much more subtle. For example, one has

Z(a) = {pn | n ∈ N} ∪ {pn + pm | n,m ∈ N} ,

for the linear recurrence a defined over the field Fp(x, y, z) by

a(n) := (x+ y + z)n − (x+ y)n − (x+ z)n − (y + z)n + xn + yn + zn .
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Derksen noted that while pathological examples of zero sets of linear recur-
rences do exist in characteristic p, the base-p expansions of the natural numbers
in the zero set are still well behaved. In fact, he proved the remarkable result
that the zero set of a linear recurrence can always be described in terms of
finite automata [10].

Theorem 1.2 (Derksen). — Let a be a linear recurrence over a field K of
characteristic p. Then the set Z(a) is p-automatic.

We recall that an infinite sequence a with values in a finite set is said to
be p-automatic if a(n) is a finite-state function of the base-p representation of
n. Roughly, this means that there exists a finite automaton taking the base-p
expansion of n as input and producing the term a(n) as output. A set E ⊂ N

is said to be p-automatic if there exists a finite automaton that reads as input
the base-p expansion of n and accepts this integer (producing as output the
symbol 1) if n belongs to E , otherwise this automaton rejects the integer n,
producing as output the symbol 0.

Let us give a formal definition of both notions. Let k ≥ 2 be a natural
number. We let Σk denote the alphabet {0, 1, . . . , k − 1}. A k-automaton is a
6-tuple

A = (Q,Σk, δ, q0,∆, τ) ,

where Q is a finite set of states, δ : Q×Σk → Q is the transition function, q0 is
the initial state, ∆ is the output alphabet and τ : Q → ∆ is the output func-
tion. For a state q in Q and for a finite word w = w1w2 · · ·wn on the alphabet
Σk, we define δ(q, w) recursively by δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn). Let

n ≥ 0 be an integer and let wrwr−1 · · ·w1w0 in (Σk)
r+1 be the base-k expan-

sion of n. Thus n =
∑r

i=0wik
i := [wrwr−1 · · ·w0]k. We denote by w(n) the

word w0w1 · · ·wr.

Definition 1.1. — A sequence (an)n≥0 is said to be k-automatic if there
exists a k-automaton A such that an = τ(δ(q0, w(n))) for all n ≥ 0.

Definition 1.2. — A set E ⊂ N is said to be recognizable by a finite k-
automaton, or for short k-automatic, if the characteristic sequence of E , defined
by an = 1 if n ∈ E and an = 0 otherwise, is a k-automatic sequence.

More generally, feeding a finite automaton with d-tuples of nonnegative in-
tegers leads to the notion of p-automatic subsets of Nd. Some background on
automata theory, including examples, formal definitions of multidimensional
automatic sequences and sets, and their extension to arbitrary finitely gener-
ated abelian groups, are given in Section 5.

Remark 1.1. — Let us make few important remarks.
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• In the previous definitions, we chose the convention that the base-k ex-
pansion of n is scanned from left to right. Our automata thus read the
input starting with the most significant digit. We recall that it is well-
known that the class of k-automatic sets or sequences remains unchanged
when choosing to read the input starting from the least significant digit
(see for instance Chapter V of [12] or Chapter 5 of [2]).

• One could also ask whether the base k plays an important role here.
As proved in a fundamental paper of Cobham [7], this is actually the
case. Periodic sets, that are sets obtained as a union of a finite set and a
finite number of infinite arithmetic progressions, are exactly those that
are k-automatic for every integer k ≥ 2. In addition, an infinite aperiodic
k-automatic set is also kn-automatic for every positive integer n, while
it cannot be ℓ-automatic if k and ℓ are two multiplicatively independent
integers.

• The class of k-automatic sets is closed under various natural operations
such as intersection, union and complement (see for instance Chapter V
of [12] or Chapter 5 of [2]).

On the other hand, it is well known that if K is a field and a is a K-valued
sequence, then a satisfies a linear recurrence over K if and only if the power
series

f(t) =
∞∑

n=0

a(n)tn

is the power series expansion of a rational function. For instance, Mahler
[28, 29, 30] worked with rational power series rather than linear recurrences
when proving what we now call the Skolem–Mahler–Lech theorem. Let

Z(f) := {n | a(n) = 0} .

Then Derksen’s theorem can be restated as follows: let K be a field of char-
acteristic p and let f(t) ∈ K[[t]] be a rational function, then the set Z(f) is
p-automatic.

This formulation of Derksen’s theorem is in the same spirit as another fa-
mous result involving automata theory and known as Christol’s theorem [6].

Theorem 1.3 (Christol). — Let q be a positive integer power of p. Then
f(t) =

∑∞
n=0 a(n)t

n ∈ Fq[[t]] is algebraic over Fq(t) if and only if the sequence
a is p-automatic.

The main aim of this paper is to produce a simultaneous multivariate gen-
eralization of both the theorem of Derksen and the theorem of Christol.
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Given a multivariate power series

f(t1, . . . , td) =
∑

(n1,...,nd)∈Nd

a(n1, . . . , nd)t
n1
1 · · · tnd

d ∈ K[[t1, . . . , td]] ,

we define the set of vanishing coefficients of f by

Z(f) = {(n1, . . . , nd) ∈ Nd | a(n1, . . . , nd) = 0} .

Our main result reads as follows.

Theorem 1.4. — Let K be a field of characteristic p and let f(t1, . . . , td) ∈
K[[t1, . . . , td]] be a power series that is algebraic over the field of multivariate
rational functions K(t1, . . . , td). Then the set Z(f) is p-automatic.

Let us make few comments on this result.

• In the case that d = 1 and f(t) is chosen to be the power series expansion
of a rational function in Theorem 1.4, we immediately obtain Derksen’s
theorem (Theorem 1.2). We do not obtain his finer characterization, but,
as explained in Section 9, it is not possible to obtain a significantly im-
proved characterization of zero sets even for multivariate rational power
series.

• In the case that d = 1 and K is chosen to be a finite field in Theorem
1.4, we cover the more difficult direction of Christol’s theorem (Theorem
1.3). Indeed, if f(t) =

∑∞
n=0 a(n)t

n ∈ K[[t]] is an algebraic power series,
then for each x ∈ K the function f(t)− x/(1 − t) is algebraic. Theorem
1.4 thus implies that the set {n ∈ N | a(n) = x} is p-automatic for all
x ∈ K. This immediately implies that the sequence a is p-automatic.

• Theorem 1.4 can actually take a stronger form. Let E ⊂ Nd. The follow-
ing conditions are equivalent.

(i) The set E is p-automatic.
(ii) E = Z(f) for some algebraic power series with coefficients over a

field of characteristic p.
Indeed, it is known [35] that given a p-automatic set E ⊂ Nd, the formal
power series

f(t1, . . . , td) =
∑

(n1,...,nd)∈E

tn1
1 · · · tnd

d

is algebraic over Fp(t1, . . . , td). From the latter property and Theorem
1.4, we also deduce the following result. Let K be a field of characteristic
p and let

f(t1, . . . , td) =
∑

(n1,...,nd)∈Nd

a(n1, . . . , nd)t
n1
1 · · · tnd

d ∈ K[[t1, . . . , td]]
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be a power series that is algebraic over the field of multivariate rational
functions K(t1, . . . , td). For x ∈ K, let

a−1(x) :=
{
(n1, . . . , nd) ∈ Nd | a(n1, . . . , nd) = x

}
.

Then for every x ∈ K the formal power series

fx(t1, . . . , td) :=
∑

(n1,...,nd)∈a−1(x)

tn1
1 · · · tnd

d

is also algebraic. In the particular case whereK is a finite field, this result
was first proved by Furstenberg [18] (see also the more recent result of
Kedlaya [24] for a generalization to Hahn’s power series with coefficients
in a finite field).

• No such multivariate generalization of the Skolem–Mahler–Lech theorem
exists in characteristic 0. For example, if one takes the rational bivariate
power series

f(x, y) =
∑

n,m

(n3 − 2m)xnym ∈ Q[[x, y]] ,

then Z(f) = {(n,m) | m ≡ 0 (mod 3), n = 2m/3}. This shows that
there is no natural way to express the set of vanishing coefficients of f in
terms of more general arithmetic progressions or in terms of automatic
sets. In fact, finding zero sets of coefficients of multivariate rational
power series with integer coefficients is often equivalent to very difficult
classes of Diophantine problems which cannot be solved at this moment,
such as for instance finding an effective procedure to solve all S-unit
equations (see Section 3 for more details). In Section 2, we also give a
Diophantine problem related to linear recurrences which is conjectured
in [4] to be undecidable and, as shown in the proof of Theorem 2.1, which
is equivalent to describe the zero sets of coefficients of a class of simple
mutivatiate rational power series with integer coefficients.

Our proof of Theorem 1.4 involves using methods of Derksen as well as more
advanced techniques from automata theory reminiscent of works of Christol
[6], Denef and Lipshitz [9], Harase [21], Shariff and Woodcock [38] among
others. We first consider the action of a certain infinite semigroup on the ring
of power series over a field of characteristic p. We use the fact that algebraic
power series have a finite orbit under the action of this semigroup to apply
Derksen’s “Frobenius splitting” technique which allows us to show that the set
of vanishing coefficients is necessarily p-automatic. An especially important
aspect of the proof of Theorem 1.2 is that each step can be made effective.
We prove that this is also the case with Theorem 1.4.
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Theorem 1.5. — Let K be a field of positive characteristic and let
f(t1, . . . , td) ∈ K[[t1, . . . , td]] be a power series that is algebraic over the field
of multivariate rational functions K(t1, . . . , td). Then the set Z(f) can be
effectively determined. Furthermore, the following properties are decidable.

(i) the set Z(f) is empty.

(ii) the set Z(f) is finite.

(iii) the set Z(f) is periodic, that is, formed by the union of a finite set and
of a finite number of (d-dimensional) arithmetic progressions.

In particular, when Z(f) is finite, one can determine (in a finite amount of
time) all its elements.

Remark 1.2. — When we say that the set Z(f) can be effectively deter-
mined, this means that there is an algorithm that produces a p-automaton
that generates Z(f) in a finite amount of time. Furthermore, there exists an
algorithm that allows one to determine in a finite amount of time whether or
not Z(f) is empty, finite, or periodic.

As we will illustrate in Sections 2, 3 and 4, applying Theorem 1.5 to mul-
tivariate rational functions actually leads to interesting effective results con-
cerning some Diophantine equations related to S-unit equations and more
generally to the Mordell–Lang Theorem over fields of positive characteristic.

The outline of this paper is as follows. Our Diophantine applications are
discussed in Sections 2, 3 and 4. In Section 5, we recall some basic background
on automata theory. We define in particular the notion of automatic sets of Nd

and more generally of automatic subsets of finitely generated abelian groups.
The latter notion does not appear to have been introduced earlier and may
be of independent interest. In Section 6, we prove Theorem 1.4. In Sections
7 and 8, we make the proof of Theorem 1.4 effective, proving Theorem 1.5.
Finally, we conclude our paper with some comments in Section 9.

2. Linear recurrences and decidability

There are many different proofs and extensions of the Skolem–Mahler–Lech
theorem in the literature (see for instance [3, 20, 33, 13]). These proofs
all use p-adic methods in some way, although the result is valid in any field
of characteristic 0. This seems to be responsible for a well-known deficiency
of the Skolem–Mahler–Lech theorem: all known proofs are ineffective. This
means that we do not know any algorithm that allows us to determine the set
Z(a) for a given linear recurrence a(n) defined over a field of characteristic
0. We refer the reader to [13] and to the recent discussion in [40] for more
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details. It is actually still unknown whether the fact that Z(a) is empty or
not is decidable. In fact, it seems unclear that one should even expect it to
be decidable. In this direction, let us recall the following conjecture from [4].
Given linear recurrences a1(n), . . . , ad(n) over a field K, we let

Z(a1, . . . , ad) :=
{
(n1, . . . , nd) ∈ Nd | a1(n1) + · · ·+ ad(nd) = 0

}
.

It was conjectured in [4] that, if K = Q, the property

Z(a1, . . . , ad) 6= ∅

is undecidable for every positive integer d large enough.

As mentioned in the introduction, the situation is drastically different for
fields of positive characteristic. Indeed, Derksen [10] proved that each step of
the proof of Theorem 1.2 can be made effective. In particular, there exists an
algorithm that allows one to decide whether the set Z(a) is empty or not in
a finite amount of time. We give below a generalization of Derksen’s theorem
to an arbitrary number of linear recurrences. It well illustrates the relevance
of Theorem 1.5.

Theorem 2.1. — Let K be a field of characteristic p, d a positive integer,
and let a1(n), . . . , ad(n) be linear recurrences over K. Then Z(a1, . . . , ad) is a
p-automatic set that can be effectively determined. In particular, the property

Z(a1, . . . , ad) 6= ∅

is decidable.

Note that, in addition, we can decide whether such a set Z(a1, . . . , ad) is
finite or periodic.

Proof. — In view of Theorem 1.5, it suffices to prove that there exists an
explicit multivariate rational function f(t1, . . . , td) ∈ K(t1, . . . , td) such that
Z(f) = Z(a1, . . . , ad).

Let i ∈ {1, . . . , d}. Since ai is a linear recurrence over K, we have that
fi(t) :=

∑
n≥0 ai(n)t

n is a rational function. Thus,

f(t1, . . . , td) :=

d∑

i=1


fi(ti) ·

∏

j 6=i

1

1− tj




is a multivariate rational function inK(t1, . . . , td). Furthermore, this definition
implies that

f(t1, . . . , td) =
∑

(n1,...,nd)∈Nd

(a1(n1) + · · ·+ ad(nd))t
n1
1 · · · tnd

d .

We thus deduce that Z(f) = Z(a1, . . . , ad). This ends the proof.
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3. Linear equations over multiplicative groups

In this section, we discuss some Diophantine equations that generalize the
famous S-unit equations (see for instance the survey [15]). More precisely,
given a field K and a finitely generated subgroup Γ of K∗, we consider linear
equations of the form

(3.1) c1X1 + · · ·+ cdXd = 1 ,

where c1, . . . , cd belong to K and where we look for solutions in Γd.
These equations have a long history. Let S be a finite number of prime

numbers and Γ ⊆ Q∗ the multiplicative group generated by the elements of S.
In 1933, Mahler [27] proved that for all nonzero rational numbers a and b the
equation

(3.2) aX + bY = 1

has only a finite number of solutions in Γ2. Lang [25] later generalized this
result by proving that for all a and b belonging to C∗ and all subgroups of
finite rank Γ of C∗, Equation (3.2) has only a finite number of solutions in Γ2.
Furthermore, in the case where Γ is a subgroup of Q∗, there exists an effective
method based on the theory of linear forms of logarithms to determine all
solutions of Equation (3.2).

When the number of variables d is larger than 2, one can no longer expect
that Equation (3.1) necessarily has only a finite number of solutions. However,
the subspace theorem can be used to prove that such an equation has only a
finite number of nondegenerate solutions; that is, solutions with the property
that no proper subsum vanishes [14, 34]. Furthermore, it is possible to use
some quantitative version of the subspace theorem to bound the number of
nondegenerate solutions. In this direction, the following general and very
strong result was obtained by Evertse, Schlickewei and W.Ṁ. Schmidt [16]:
given K a field of characteristic 0 and Γ a multiplicative subgroup of rank r
of K∗, Equation (3.1) has at most exp((6d)3d(r+1)) nondegenerate solutions.
However, all general known results concerning more than two variables are
ineffective.

The situation in characteristic p is similar to the one encountered with the
Skolem–Mahler–Lech theorem. The Frobenius endomorphism may be respon-
sible for the existence of “pathological solutions”. Indeed, it is easy to check
that, for every positive integer q that is a power of p, the pair (tq, (1 − t)q) is
a solution of the equation

X + Y = 1

in Γ2, where Γ is the multiplicative subgroup of Fp(t)
∗ generated by t and

1 − t. In fact, if we take K = Fp(t) and Γ = 〈t, (1 − t)〉, we can find more
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sophisticated examples. As observed in [31], the equation

X + Y − Z = 1

has for every pair of positive integer (n,m) the nondegenerated solution

X = t(p
n−1)pm , Y = (1− t)p

n+m

, Z = t(p
n−1)pm(1− t)p

m

.

Thus, there is no hope to obtain in this framework results similar to those
mentioned previously. Concerning Equation (3.2), Voloch [41] gave interesting
results. He obtained, in particular, conditions that ensure the finiteness of the
number of solutions (with explicit bounds for the number of solutions). Masser
[31] obtained a result concerning the structure of the solutions of the general
Equation (3.1). His aim was actually to prove a conjecture of K. Schmidt
concerning mixing properties of algebraic Zd-actions (see [31, 36, 37] for
more details on this problem).

As a consequence of Theorem 1.5, we are able to give a satisfactory effective
solution to the general equation (3.1) over fields of positive characteristic,
proving that the set of solutions is p-automatic in a natural sense. We note
that the notion of an automatic subset of a finitely generated abelian group is
given in Section 5 (see Definition 5.9 and Proposition 5.4).

Theorem 3.1. — Let K be a field of characteristic p, let c1, . . . , cd ∈ K∗,
and let Γ be a finitely generated multiplicative subgroup K∗. Then the set of
solutions in Γd of the equation

c1X1 + · · ·+ cdXd = 1

is a p-automatic subset of Γd that can be effectively determined.

Proof. — Let

S :=
{
(x1, . . . , xd) ∈ Γd | c1x1 + · · ·+ cdxd = 1

}
.

Our aim is to prove that S is p-automatic and can be effectively determined.

We first fix some notation. Let g1, . . . , gm be a set of generators of Γ and let
us consider a surjective group homomorphism Φ : Zm → Γ. This allows us to
define a surjective group homomorphism Φ̃ : (Zm)d → Γd by Φ̃(x1, . . . ,xd) =

(Φ(x1), . . . ,Φ(xd)). By Proposition 5.3, it is enough to show that Φ̃−1(S)
is a p-automatic subset of (Zm)d ≃ Zm×d. Let E := {±1}m. Given n :=
(n1, . . . , nm) ∈ Nm and a := (a1, . . . , am) ∈ E , we let a ·n := (a1n1, . . . , amnm)
denote the ordinary coordinate-wise multiplication. Given A ⊆ Nm, we also
set a ·A := {a · n | n ∈ A}. For every a := (a1, . . . ,ad) ∈ Ed, we set

Sa :=
{
(n1, . . . ,nd) ∈ Nm×d | c1Φ(a1 · n1) + · · ·+ cdΦ(ad · nd) = 1

}
.
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Thus

(3.3) Φ̃−1(S) =
⋃

a∈Ed

a · Sa .

Note that by Proposition 5.1, S is p-automatic subset of Γd if and only if Sa
is a p-automatic subset of Nd for every a ∈ Ed.

We let ti,j be indeterminates for 1 ≤ i ≤ d and 1 ≤ j ≤ m. We define
ti = (ti,1, . . . , ti,m) for 1 ≤ i ≤ d. Given n ∈ Nm and i ∈ {1, 2, . . . , d}, we
define tni to be the product tn1

i,1 · · · t
nm

i,m. Given a := (a1, . . . ,ad) ∈ Ed, we
define the function

fa(t1, . . . , td) :=
∑

n1,...,nd∈Nm

(
−1 +

d∑

i=1

ciΦ(ai · ni)

)
tn1
1 · · · tnd

d .

This definition ensures that

(3.4) Sa = Z(fa) .

For every i ∈ {1, 2, . . . , d}, we also set ni = (ni,1, . . . , ni,m) and ai :=
(ai,1, . . . , ai,m). Let ej = (0, 0, . . . , 0, 1, 0 . . . , 0) ∈ Zm denote the element
whose jth coordinate is 1 and whose other coordinates are 0. Then for every
i ∈ {1, . . . , d}, we have

∑

ni∈Nm

ciΦ(ai · ni)t
ni

i =
∞∑

ni,1=0

· · ·
∞∑

ni,m=0

m∏

j=1

Φ(ej)
ai,jni,j t

ni,j

i,j

=

m∏

j=1

(1− Φ(ej)
ai,j ti,j)

−1

is a rational function. Hence

fa(t1, . . . , td) =

d∏

i=1

m∏

j=1

(1− ti,j)
−1


−1 +

d∑

i=1

ci

m∏

j=1

(1− ti,j)

(1− Φ(ej)ai,j ti,j)




is a rational function for each a ∈ Ed. Since we get an explicit expression for
the function fa (assuming that we explicitly know a set of generators g1, . . . , gm
of Γ), we infer from Theorem 1.5 that the set Z(fa) is a p-automatic subset
of Nd which can be effectively determined. By (3.3) and (3.4), this ends the
proof.



12 BORIS ADAMCZEWSKI & JASON P. BELL

4. An effective result related to the Mordell–Lang theorem

The expression “Mordell–Lang theorem” or “Mordell–Lang conjecture”
serves as a generic appellation which denotes results describing the structure
of intersections of the form

X ∩ Γ ,

where X is a subvariety (Zariski closed subset) of a (affine, abelian, or semi-
abelian) variety A and Γ is a finitely generated subgroup (or even a subgroup
of finite rank) of A. The case where the variety A is defined over a field of
characteristic 0 has many interesting Diophantine consequences, including the
famous Faltings’ theorem [17].

On the other hand, simple examples constructed using the Frobenius endo-
morphism (as in Section 3) show that such intersections may behave differently
when the variety A is defined over a field of positive characteristic. Hrushovski
[23] proved a relative version of the Mordell–Lang conjecture for semi-abelian
varieties defined over a field K of positive characteristic. His approach, which
makes use of model theory, has then been pursued by several authors (see for
instance [32] and [19]).

All general results known up to now in this direction seem to be ineffective.
The aim of this section is to prove the two following effective statements. We
recall that the notion of an automatic subset of a finitely generated abelian
group is given in Section 5 (see Definition 5.9 and Proposition 5.4).

Theorem 4.1. — Let K be a field of characterisitc p and let d be a positive
integer. Let X be a Zariski closed subset of GLd(K) and Γ a finitely generated
abelian subgroup of GLd(K). Then the set X ∩ Γ is a p-automatic subset of Γ
that can be effectively determined.

Note more generally that, given positive integers d1, . . . , dn, the same result
holds for Zariski closed subsets of

∏n
i=1GLdi(K). Indeed, we have a natural

embedding ß of
∏n

i=1GLdi(K) as a Zariski closed subset of GLd1+···+dn(K),
where ß sends an n-tuple of invertible matrices in which the ith matrix has size
di × di to the block diagonal matrix with n blocks whose ith block is the ith
coordinate of our n-tuple. Indeed, under this identification,

∏n
i=1GLdi(K) is

the zero set of the linear polynomials xi,j for which i and j have the property
that there does not exist a positive integer k, k ≤ n, such that

d0 + · · · + dk−1 < i, j ≤ d1 + · · · + dk ,

where we take d0 to be zero. Given a Zariski closed subsetX of
∏n

i=1GLdi(K),
we thus may regard X as a Zariski closed subset of GLd1+···+dn(K). We
note that the additive torus embeds in GL2(K) by identifying the torus with
unipotent upper-triangular matrices. Moreover, this is easily seen to be a
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Zariski closed subset of GL2(K). Applying these remarks with d1, . . . , dn ∈
{1, 2}, we deduce the following corollary.

Corollary 4.1. — Let K be a field of characterisitc p and let s and t be
nonnegative integers. Let X be a subvariety of Gs

a(K)×Gt
m(K) and Γ a finitely

generated subgroup of Gs
a(K)×Gt

m(K). Then the set X ∩ Γ is a p-automatic
subset of Γ that can be effectively determined.

We note that one can actually obtain an ineffective version of Theorem 4.1
from Corollary 4.1. In fact, one only needs to consider multiplicative tori.
To see this, we observe that if Γ is a finitely generated abelian subgroup of
GLd(K), then by considering Jordan forms, there is some natural number n
such that gp

n

is diagonalizable for every g ∈ Γ. As commuting diagonalizable
operators are simultaneously diagonalizable, we may replace K by a finite
extension K ′ that contains the eigenvalues of gp

n

as g ranges over a generating
set, and assume that Γpn is a subgroup of T ∼= Gd

m(K ′), the invertible diagonal
matrices in GLd(K

′). As X ∩ T is Zariski closed in T and X ∩ Γpn = (X ∩
T ) ∩ Γpn , Corollary 4.1 applies and so Γpn ∩X is p-automatic. By applying a
suitable translate, it follows that the intersection of X with each coset of Γ/Γpn

is p-automatic. As there are only finitely many cosets, using basic properties
of automaticity, we deduce that Γ ∩X is p-automatic.

It is however less clear whether an effective version of Theorem 4.1 can
be obtained from Corollary 4.1. Indeed, to determine the intersection using
the method described above in practice, one must be able to explicitly find
eigenvectors in order to diagonalize elements of Γpn . A necessary step in doing
this is to find roots of characteristic polynomials in the algebraic closure of K,
which seems uneasy to be done explicitly in general.

It is also natural to ask whether a similar version of Theorem 4.1 might hold
for abelian varieties. We believe this to be the case, but it is not clear whether
the result follows from our approach: if P is a point on an abelian variety X
over a field of positive characteristic then the points n · P do not appear, in
general, to be sufficiently well-behaved to allow one to associate an algebraic
generating function, which is necessary to apply our methods.

Proof of Theorem 4.1. — We first make a few reductions. We let Φ :

GLd(K) → Ad2(K) be the injective morphism whose image, Y , consists of
all points at which the determinant does not vanish. Note that the affine va-

riety GLd(K) is a Zariski open subset of Ad2(K) and that the Zariski closed
subsets of GLd(K) are precisely those obtained by intersecting Zariski closed

subsets of Ad2(K) with GLd(K). By the Hilbert Basis Theorem, a Zariski

closed subset of Ad2(K) is given by the vanishing set of a finite set of polyno-
mials. Thus there are polynomials P1, . . . , Pr ∈ K[x1,1, . . . , xd,d] such that for
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M ∈ GLd(K),

M ∈ X ⇐⇒ P1(Φ(M)) = · · · = Pr(Φ(M)) = 0 .

It is then enough to consider the case that Φ(X) = Z(P ) ∩ Y , where P is
a single polynomial in the indeterminates xi,j with 1 ≤ i, j ≤ d and Z(P )
denotes the set of zeros of P .

Let Γ be a finitely generated abelian subgroup of GLd(K) and let X be
a Zariski closed subset of GLd(K) such that Φ(X) = Z(P ) ∩ Y , where P ∈
K[x1,1, . . . , xd,d]. Our aim is to prove that X ∩ Γ is a p-automatic subset
of Γ. Let C1, . . . , Cm ∈ GLd(K) be generators of Γ and suppose that Ψ :
Zm → Γ is the surjective group homomorphism defined by Ψ(ei) = Ci for
1 ≤ i ≤ m, where ei stands for the vector whose ith coordinate is 1 and all
other coordinates are 0. We let n denote an m-tuple (n1, . . . , nm) ∈ Nm. By
Proposition 5.3, X ∩ Γ is p-automatic if

S := {n ∈ Zm | P (Φ ◦Ψ(n)) = 0}

is a p-automatic subset of Zm. Let E := {±1}m. Given n := (n1, . . . , nm) ∈
Nm and a := (a1, . . . , am) ∈ E , we denote by a · n := (a1n1, . . . , amnm) the
ordinary coordinate-wise multiplication. Given A ⊆ Nm, we also set a · A :=
{a · n | n ∈ A}. For every a ∈ E , we set

Sa := {n ∈ Nm | P (Φ ◦Ψ(a · n)) = 0} .

Note that by Proposition 5.1, S is a p-automatic subset of Zm if and only if
Sa is a p-automatic subset of Nm for every a ∈ E .

To see this, let tj be indeterminates for 1 ≤ j ≤ m. Given n ∈ Nm, we
define tn to be the product tn1

1 · · · tnm
m . Let a = (a1, . . . , am) ∈ E . We set

fa(t) :=
∑

n∈Nm

Ψ(a · n)tn ∈ GLd(K)[[t]] .

We claim that for 1 ≤ i, j ≤ d, the (i, j) entry of Ψ(a · n)tn is a rational
function in t. To see this, first note that since C1, . . . , Cm commute, we have

fa(t) =
∑

(n1,...,nm)∈Nm

Ψ(Ca1n1
1 , . . . , Camnm

m )tn1
1 · · · tnm

m

=

m∏

i=1

∑

ni∈N

Caini

i tni

i .

On the other hand, for every i ∈ {1, . . . ,m}, the sum
∑

ni∈N

Caini

i tni

i

is a d × d matrix whose entries are rational functions that belong to K(ti).
This follows for instance from Proposition 1.1 in [20]. Since rational functions



15

are closed under Hadamard product and taking linear combinations, we obtain
that fa(t) is a d×d matrix whose entries are all multivariate rational functions
in t. For all 1 ≤ i, j ≤ d, let us denote by fi,j,a(t) the (i, j) entry of fa(t).
Note that the power series

f̃a(t) :=
∑

n∈Nm

P (Φ ◦Ψ(a · n))tn

can be obtained by taking Hadamard product and linear combinations of the
rational functions fi,j,a(t). We thus deduce that f̃a(t) belongs to the field of

multivariate rational functions K(t). On the other hand, the definition of f̃a
implies that

Sa = Z(f̃a) .

By Theorem 1.5, we have that the set Sa is a p-automatic set that can be
effectively determined. Since this holds true for evey a ∈ E , this ends the
proof.

5. Background from automata theory

We start this section with few examples of automatic sequences and auto-
matic subsets of the natural numbers, as well as a useful chatacterization of
them (Theorem 5.1). Then we describe Salon’s [35] extension of the notion of
automatic sets to subsets of Nd and show how to genralize it to subsests of Zd.
Finally, we introduce a natural notion of automaticity for subsets of arbitrary
finitely generated abelian groups. It seems that the latter notion has not been
considered before and that it could be of independent interest.

Let k ≥ 2 be a natural number. We let Σk denote the alphabet
{0, 1, . . . , k − 1}.

5.1. Automatic sequences and one-dimensional automatic sets. —
For reader’s convenience we choose to recall here the definitions of a k-
automatic sequence and a k-automatic subset of the natural numbers.

A k-automaton is a 6-tuple

A = (Q,Σk, δ, q0,∆, τ) ,

where Q is a finite set of states, δ : Q×Σk → Q is the transition function, q0 is
the initial state, ∆ is the output alphabet and τ : Q → ∆ is the output func-
tion. For a state q in Q and for a finite word w = w1w2 · · ·wn on the alphabet
Σk, we define δ(q, w) recursively by δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn). Let

n ≥ 0 be an integer and let wrwr−1 · · ·w1w0 in (Σk)
r+1 be the base-k expan-

sion of n. Thus n =
∑r

i=0wik
i := [wrwr−1 · · ·w0]k. We denote by w(n) the

word w0w1 · · ·wr. A sequence (an)n≥0 is said to be k-automatic if there exists
a k-automaton A such that an = τ(δ(q0, w(n))) for all n ≥ 0. A set E ⊂ N
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is said to be recognizable by a finite k-automaton, or for short k-automatic,
if the characteristic sequence of E , defined by an = 1 if n ∈ E and an = 0
otherwise, is a k-automatic sequence.

Example 5.1. — The Thue–Morse sequence t := (tn)n≥0 is probably the
famous example of automatic sequences. It is defined as follows: tn = 0
if the sum of the binary digits of n is even, and tn = 1 otherwise. The
Thue–Morse sequence can be generated by the following finite 2-automaton:
A = ({A,B}, {0, 1}, δ, A, {0, 1}, τ), where δ(A, 0) = δ(B, 1) = A, δ(A, 1) =
δ(B, 0) = B, τ(A) = 0 and τ(B) = 1.

A/0 B/1

0 0
1

1

Figure 1. A 2-automaton generating Thue–Morse sequence.

Example 5.2. — The simplest automatic sets are arithmetic progressions.

A/0 B/1

C/0 D/0 E/0

1 0
1

0

1

1

0

0

1
0

Figure 2. A 2-automaton recognizing the arithmetic progression
5N+ 3.

Example 5.3. — The set {1, 2, 4, 8, 16, . . .} formed by the powers of 2 is also
a typical example of a 2-automatic set.

A/0 B/1 C/01 1

0 0 0, 1

Figure 3. A 2-automaton recognizing the powers of 2.

Example 5.4. — In the same spirit, the set formed by taking all integers
that can be expressed as the sum of at most two powers of 3 is 3-automatic.
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A/0 B/1

C/1 D/0

1

12

0 0

0 0, 1, 2
2

1, 2

Figure 4. A 3-automaton recognizing those integers that are the
sum of at most two powers of 3.

There are also much stranger automatic sets. The fact that the class of
k-automatic sets is closed under various natural operations such as intersec-
tion, union and complement, can actually be used to easily construct rather
sophisticated automatic sets. For instance, the set of integers whose binary
expansion has an odd number of digits, does not contain three consecutive 1’s,
and contains an even number of two consecutive 0’s is a 2-automatic set.

An important notion in the study of k-automatic sequences is the notion of
k-kernel.

Definition 5.1. — The k-kernel of a sequence a = (an)n≥0 is defined as the
set {

(akin+j)n≥0 | i ≥ 0, 0 ≤ j < ki
}
.

Example 5.5. — The 2-kernel of the Thue–Morse sequence t has only two
elements t and the sequence t obtained by exchanging the symbols 0 and 1 in
t.

This notion gives rise to a useful characterization of k-automatic sequences
which was first proved by Eilenberg in [12].

Theorem 5.1 (Eilenberg). — A sequence is k-automatic if and only if its
k-kernel is finite.

5.2. Automatic subsets of Nd and multidimensional automatic se-
quences. — Salon [35] extended the notion of automatic sets to include
subsets of Nd, where d ≥ 1. To do this, we consider an automaton

A =
(
Q,Σd

k, δ, q0,∆, τ
)
,
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where Q is a finite set of states, δ : Q × Σd
k → Q is the transition function,

q0 is the initial state, ∆ is the output alphabet and τ : Q → ∆ is the out-
put function. Just as in the one-dimensional case, for a state q in Q and
for a finite word w = w1w2 · · ·wn on the alphabet Σd

k, we recursively define
δ(q, w) by δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn). We call such an automaton a
d-dimensional k-automaton.

We identify
(
Σd
k

)∗
with the subset of (Σ∗

k)
d consisting of all d-tuples

(u1, . . . , ud) such that u1, . . . , ud all have the same length. Each nonnegative
integer n can be written uniquely as

n =

∞∑

j=0

ej(n)k
j ,

in which ej(n) ∈ {0, . . . , k−1} and ej(n) = 0 for all sufficiently large j. Given
a nonzero d-tuple of nonnegative integers (n1, . . . , nd), we set

h := max{j ≥ 0 | there exists some i , 1 ≤ i ≤ d, such that ej(ni) 6= 0} .

Furthermore, if (n1, . . . , nd) = (0, . . . , 0), we set : h = 0.
We can then produce an element

wk(n1, . . . , nd) := (w1, . . . , wd) ∈
(
Σd
k

)∗

corresponding to (n1, . . . , nd) by defining

wi := eh(ni)eh−1(ni) · · · e0(ni) .

In other words, we are taking the base-k expansions of n1, . . . , nr and then
“padding” the expansions of each ni at the beginning with 0’s if necessary to
ensure that each expansion has the same length.

Example 5.6. — If d = 3 and k = 2, then we have w2(3, 5, 0) =
(011, 101, 000).

Definition 5.2. — A map f : Nd → ∆ is k-automatic if there is a d-
dimensional k-automaton A =

(
Q,Σd

k, δ, q0,∆, τ
)
such that

f(n1, . . . , nd) = τ(δ(q0, wd(n1, . . . , nd))) .

Similarly, a subset S of Nd is k-automatic if its characteristic function,
f : Nd → {0, 1}, defined by f(n1, . . . , nd) = 1 if (n1, . . . , nd) ∈ S; and
f(n1, . . . , nd) = 0, otherwise, is k-automatic.

Example 5.7. — Let f : N2 → {0, 1} be defined by f(n,m) = 1 if the sum
of the binary digits of n added to the sum of the binary digits of m is even,
and f(n,m) = 0 otherwise. Then f(m,n) is a 2-automatic map. One can
check that f can be generated by the following 2-dimensional 2-automaton:
A =

(
{A,B}, {0, 1}2 , δ, A, {0, 1}, τ

)
, where δ(A, (0, 0)) = δ(A, (1, 1)) =
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δ(B, (1, 0)) = δ(B, (0, 1)) = A, δ(A, (1, 0)) = δ(A, (0, 1)) = δ(B, (0, 0)) =
δ(B, (1, 1)) = B, τ(A) = 0 and τ(B) = 1.

A/0 B/1

(0, 0), (1, 1) (0, 0), (1, 1)
(0, 1), (1, 0)

(0, 1), (1, 0)

Figure 5. A 2-dimensional 2-automaton generating the map f de-
fined in Example 5.7.

Just as k-automatic sequences can be characterized by the finiteness of the
k-kernel, multidimensional k-automatic sequences have a similar characteriza-
tion.

Definition 5.3. — Let d be a positive integer and let ∆ be a finite set. We
define the k-kernel of a map f : Nd → ∆ to be the collection of all maps of
the form

g(n1, . . . , nd) := f(kan1 + b1, . . . , k
and + bd)

where a ≥ 0 and 0 ≤ b1, . . . , bd < ka.

Example 5.8. — The 2-kernel of the map f : N2 → {0, 1} defined in Example
5.7 consists of the 2 maps f1(m,n) := f(m,n), f2(m,n) = f(2m+ 1, 2n).

Just as Eilenberg [12] showed that being k-automatic is equivalent to having
a finite k-kernel for k-automatic sequences, Salon [35, Theorem 1] observed
that a similar characterization of multidimensional k-automatic maps holds.

Theorem 5.2 (Salon). — Let d be a positive integer and let ∆ be a finite
set. A map f : Nd → ∆ is k-automatic if and only if its k-kernel is finite.

5.3. Automatic subsets of Zd. — We show now how to naturally extend
Salon’s construction to k-automatic subsets of Zd by simply adding sympols
+ and − to our alphabet Σk.

Given a natural number n, we let [n]k denote the base-k expansion of n.
We set

Σ′
k = {0, 1, . . . , k − 1,−,+}

and we let Lk denote the language over the alphabet Σ′
k consisting of the

empty word and all words over Σ′
k whose length is at least 2 such that the

initial letter is either + or −, the remaining letters are all in Σk, and the last
letter is not equal to zero. This is easily seen to be a regular language.
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There is a bijection [ · ]k : L(k) → Z in which the empty word is sent to
zero,

+s0 · · · sn ∈ L(k) 7→
n∑

j=0

sjk
j

and

−s0 · · · sn ∈ L(k) 7→ −
n∑

j=0

sjk
j ,

where s0, . . . , sn ∈ {0, 1, . . . , k − 1}.

Definition 5.4. — We say that a subset S of Z is k-automatic if there is a
finite-state automaton that takes words over Σ′

k as input, and has the property
that a word W ∈ Lk is accepted by the automaton if and only if [W ]k ∈ S.

More generally, we can define automatic subsets of Zd, mimicking the con-
struction of Salon [35]. For a natural number d ≥ 1, we create the alphabet

Σ′
k(d) to be the alphabet (Σ′

k)
d consisting of all d-tuples of elements of Σ′

k.
With this in mind, we construct a regular language Lk(d) ⊆ (Σ′

k(d))
∗ as fol-

lows. Given a nonzero integer n, we can write it uniquely as

n = ǫ
∞∑

j=0

ej(n)k
j ,

in which ǫ ∈ {±1}, ej(n) ∈ {0, . . . , k − 1} and there is some natural number
N , depending on n, such that ej(n) = 0 whenever j > N . We also set

0 = +

∞∑

j=0

ej(0)k
j ,

where ej(0) = 0 for all j ≥ 0. Given a nonzero d-tuple of integers (n1, . . . , nd),
we set

h := max{j | there exists some i such that ej(ni) 6= 0} .

If (n1, . . . , nd) = (0, . . . , 0), we set : h = 0.
We can then produce an element

wk(n1, . . . , nd) := (w1, . . . , wd) ∈
(
Σ′
k(d)

)∗

corresponding to (n1, . . . , nd) by defining

wi := ǫieh(ni)eh−1(ni) · · · e0(ni) ,

where ǫi is + if ni is nonnegative and is − if ni < 0. In other words, we are
taking the base k-expansions of n1, . . . , nd and then “padding” the expansions
of each ni at the beginning to ensure that each expansion has the same length.
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Example 5.9. — If d = 3 and k = 2, then we have w3(14,−3, 0) =
(+1110,−0011,+0000).

We then take Lk(d) to be the collection of words of the form

wk(n1, . . . , nd)

where (n1, . . . , nd) ∈ Zd. Then there is an obvious way to extend the map [·]k
to a bijection [ · ]k : Lk(d) → Zd; namely,

[wk(n1, . . . , nd)]k := (n1, . . . , nd) .

We also denote by [ · ]−1
k the reciprocal map.

We can now define the notion of a k-automatic function from Zd to a finite
set as follows.

Definition 5.5. — Let ∆ be a finite set. A function f : Zd → ∆ is k-
automatic if there is a finite automaton that takes words over Lk(d) as input
and has the property that reading a word W ∈ Lk(d), the automaton outputs
f([W ]k).

Similarly, a subset S of Zd is k-automatic if its characteristic function,
f : Zd → {0, 1}, defined by f(n1, . . . , nd) = 1 if (n1, . . . , nd) ∈ S; and
f(n1, . . . , nd) = 0, otherwise, is k-automatic.

In fact, much as in the classical situation, automaticity of subsets of Zd can
be characterized using the kernel.

Definition 5.6. — Let d ≥ 1 be an integer and ∆ a finite set. Given a map
f : Zd → ∆, we define the k-kernel of f to be the collection of all maps of the
form

g(n1, . . . , nd) := f(kan1 + b1, . . . , k
and + bd)

where a ≥ 0 and 0 ≤ b1, . . . , bd < ka.

Proposition 5.1. — Let d ≥ 1 be an integer and ∆ a finite set. Given a map
f : Zd → ∆, the following are equivalent.

(i) The map f is k-automatic.
(ii) The k-kernel of f is finite.
(iii) For each ǫ = (ǫ1, . . . , ǫd) ∈ {±1}d, the function fǫ : N

d → ∆ defined by
(n1, . . . , nd) 7→ f(ǫ1n1, . . . , ǫdnd) is k-automatic in the usual sense.

Proof. — We note that by definition of automatic maps on Zd, each of the fǫ is
k-automatic in the usual sense and hence (i) implies (iii). Similarly, (iii) implies
(i). Next assume that (iii) holds. Let h(n1, . . . , nd) = f(kan1 + b1, . . . , k

and +
bd) be a map in the kernel of f . Then for ǫ = (ǫ1, . . . , ǫd) ∈ {±1}d, the map
hǫ : N

d → ∆ defined by (n1, . . . , nd) 7→ h(ǫ1n1, . . . ǫdnd) is of the form

f(ǫ1k
an1 + b1, . . . , ǫdk

and + bd),
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which is in the k-kernel of fǫ. Since there are only finitely many ǫ =
(ǫ1, . . . , ǫd) ∈ {±1}d and only finitely many elements in the kernel of fǫ, we see
that the kernel of f is finite and hence (iii) implies (ii). Similarly, (ii) implies
(iii).

5.4. Automatic subsets of finitely generated abelian groups. — We
introduce here a relevant notion of automaticity for subsets of arbitrary finitely
generated abelian groups. In this area, we quote [1] where the authors provide
a general framework for the automaticity of maps from some semirings to
finite sets. In particular, a similar notion of automaticity for subsets of Z2 was
considered in that paper.

In this more general framework, it seems more natural to define first k-
automatic maps in terms of some generalized k-kernels and then to prove that
such maps can be characterized in terms of finite automata.

In the rest of this section, all finitely generated abelian groups are written
additively. We thus first define the k-kernel of a map from a finitely generated
abelian group to a finite set.

Definition 5.7. — Let Γ be a finitely generated abelian group and T =
{γ1, . . . , γd} a set of generators of Γ. Let ∆ be a finite set. Given a map
f : Γ → ∆, we define the k-kernel of f with respect to the generating set T to
be the collection of all maps from Γ to ∆ of the form

g(x) := f(kax+ b1γ1 + · · ·+ bdγd)

such that a ≥ 0 and 0 ≤ b1, . . . , bd < ka.

We can now define k-automatic maps as follows.

Definition 5.8. — Let Γ be a finitely generated abelian group and ∆ a finite
set. A map f : Γ → ∆ is k-automatic if its k-kernel with respect to every finite
generating set of Γ is finite.

As usual, we can use the previous definition to introduce the notion of a
k-automatic subset of a finitely generated abelian group.

Definition 5.9. — Let Γ be a finitely generated abelian group. A subset S
of Γ is k-automatic if the map χS : Γ → {0, 1}, defined by χS(x) = 1 if and
only if x ∈ S, is k-automatic.

We note that our definition of k-automaticity appears to be somewhat dif-
ficult to verify, as we must check that the k-kernel is finite with respect to
every finite generating set. As shown below, it actually suffices to check that
the k-kernel is finite with respect to just anyone generating set.
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Proposition 5.2. — Let Γ be a finitely generated abelian group and ∆ a finite
set. Let us assume that the map f : Γ → ∆ has a finite k-kernel with respect
to some generating set of Γ. Then the map f is k-automatic.

Proof. — Suppose that the k-kernel of f is finite with respect to the generating
set T := {γ1, . . . , γd} of Γ and let f1, . . . , fm denote the distinct maps in the
k-kernel of f .

Given another generating set of Γ, say T ′ := {δ1, . . . , δe}, we have to show
that the k-kernel of f with respect to T ′ is also finite.

There exist integers ci,j with 1 ≤ i ≤ d and 1 ≤ j ≤ e such that

δj =
d∑

i=1

ci,jγi

for j ∈ {1, . . . , e}. Set N :=
∑

i,j |ci,j|. Given an integer i, 1 ≤ i ≤ m, and a

d-tuple of integers j = (j1, . . . , jd), we define the map gi,j from Γ to ∆ by

gi,j(x) := fi(x+ j1γ1 + · · ·+ jdγd)

for all x ∈ Γ. We claim that the k-kernel of f with respect to T ′ is contained
in the finite set S defined by

S :=
{
gi,j : Γ → ∆ | j = (j1, . . . , jd) ∈ {−N,−N + 1, . . . , N}d, i ∈ {1, . . . ,m}

}
.

To see this, note that if a ≥ 0 and 0 ≤ b1, . . . , bd < ka, then

b1δ1 + · · ·+ beδe = b′1γ1 + · · ·+ b′dγd ,

where b′i =

e∑

j=1

bjci,j. It follows that

|b′i| ≤ N(ka − 1)

for every i, 1 ≤ i ≤ d. We can thus write b′i = kami + ri with |mi| < N and
0 ≤ ri < ka. This implies that

f(kax+ b1δ1 + · · ·+ beδe) = f(kax+ b′1γ1 + · · ·+ b′dγd)

= f(ka(x+m1γ1 + · · ·+mdγd)

+r1γ1 + · · · + rdγd)

= fℓ(x+m1γ1 + · · ·+mdγd)

for some ℓ, 1 ≤ ℓ ≤ m. Thus we see that

f(kax+ b1δ1 + · · ·+ beδe) = gℓ,m(x)

where m := (m1, . . . ,md), which proves that the k-kernel of f with respect to
the generating set T ′ is included in the finite set S, as claimed.
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Proposition 5.3. — Let Γ1 and Γ2 be two finitely generated abelian groups,
and Φ : Γ1 → Γ2 a surjective group homomorphism. If S is a k-automatic
subset of Γ2 then Φ−1(S) is a k-automatic subset of Γ1.

Proof. — Let f and g denote respectively the characteristic function of Φ−1(S)
and S. Let {γ1, . . . , γd} be a set of generators of Γ1. Then if a ≥ 0 and
0 ≤ b1, . . . , bd < ka, we infer from the definition of f that

f(kax+ b1γ1 + · · ·+ bdγd) = 1 ⇐⇒ Φ(kax+ b1γ1 + · · ·+ bdγd) ∈ S ,

which occurs if and only if

g

(
kaΦ(x) +

d∑

i=1

biΦ(γi)

)
= 1 .

Note that

T := {Φ(γi) : 1 ≤ i ≤ d}

is a set of generators of Γ2 since Φ is surjective. Since, by assumption, g is
k-automatic, the k-kernel of g is finite with respect to T . Thus the k-kernel
of f is finite with respect to T ′ := {γ1, . . . , γd}. The result now follows from
Proposition 5.2.

We can now prove, as we may expect, that a k-automatic subset of a finitely
generated abelian group can be described by a finite automaton.

Proposition 5.4. — Let Γ be a finitely generated group, {γ1, . . . , γd} a set
of generators of Γ, and S a subset of Γ. Then S is k-automatic if and
only if there exists a finite automaton that takes words over Lk(d) as in-
put and has the property that for every d-tuple of integers (n1, . . . , nd) the
word [(n1, . . . , nd)]

−1
k ∈ Lk(d) is accepted by the automaton if and only if

n1γ1 + · · · + ndγd belongs to S.

Proof. — For every integer i, 1 ≤ i ≤ d, we denote by ei := (0, 0, ..., 0, 1, 0..., 0)
the element of Zd whose jth coordinate is 1 and whose other coordinates are
0. Let Φ be the surjective group homomorphism from Zd to Γ defined by
Φ(ei) = γi for every integer i, 1 ≤ i ≤ d.

If S is k-automatic then, by Proposition 5.3, Φ−1(S) is a k-automatic subset
of Zd. By Definition 5.5, there is a finite automaton that takes words over
Lk(d) as input and has the property that the word W ∈ Lk(d) is accepted by
the automaton if and only if [W ]k belongs to Φ−1(S). Thus for every d-tuple
of integers (n1, . . . , nd) the word [(n1, . . . , nd)]

−1
k ∈ Lk(d) is accepted by this

automaton if and only if n1γ1 + · · ·+ ndγd belongs to S.
On the other hand, if there exists a finite automaton such that for every

d-tuple of integers (n1, . . . , nd) the word [(n1, . . . , nd)]
−1
k ∈ Lk(d) is accepted
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by this automaton if and only if n1γ1+ · · ·+ndγd belongs to S. The same au-
tomaton can also be used to recognize Φ−1(S). Thus Φ−1(S) is a k-automatic
subset of Zd. By Proposition 5.1, the set Φ−1(S) has a finite k-kernel and it
follows that S has a finite k-kernel with respect to {γ1, . . . , γd}. By Proposition
5.2, S is thus a k-automatic subset of Γ.

6. Proof of our main result

Our aim is to prove Theorem 1.4. Throughout this section, we take d to be
a natural number. We let n and j denote respectively the d-tuple of natural
numbers (n1, . . . , nd) and (j1, . . . , jd). We will also let tn denote the monomial
tn1
1 · · · tnd

d in indeterminates t1, . . . , td. The degree of such a monomial is the
nonnegative integer n1 + · · · + nd. Given a polynomial P in K[t], we denote
by degP the maximum of the degrees of the monomials appearing in P with
nonzero coefficient.

Definition 6.1. — We say that a power series f(t) ∈ K[[t]] is algebraic if
it is algebraic over the field of rational functions K(t), that is, if there exist
polynomials A0, . . . , Am ∈ K[t], not all zero, such that

m∑

i=0

Ai(t)f(t)
i = 0 .

In order to prove Theorem 1.4 we need to introduce some notation. For
each j = (j1, . . . , jd) ∈ {0, 1, . . . , p − 1}d, we define ej : N

d → Nd by

(6.5) ej(n1, . . . , nd) := (pn1 + j1, . . . , pnd + jd) .

We let Σ denote the semigroup generated by the collection of all ej under
composition. In view of Definition 5.3, this semigroup is intimately related to
the definition of the p-kernel of d-dimensional maps. As a direct consequence
of Theorem 5.2, we make the following remark which underlines the important
role that will be played by the semigroup Σ in the proof of Theorem 1.4.

Remark 6.1. — Let ∆ be a finite set. Then a map a : Nd → ∆ is p-automatic
if and only the set of functions {a ◦ e | e ∈ Σ} is a finite set.

We recall that a field K of characteristic p > 0 is perfect if the map x 7→ xp

is surjective on K. Let p be a prime number and let K be a perfect field of
characteristic p. For every j ∈ Σd

p = {0, 1, . . . , p − 1}d, we define the so-called
Cartier operator Ej from K[[t]] into itself by

(6.6) Ej(f(t)) :=
∑

n∈Nd

(a ◦ ej(n))
1/ptn
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where f(t) :=
∑

n∈Nd a(n)tn ∈ K[[t]]. Then we have the following useful
decomposition:

(6.7) f =
∑

j∈Σd
p

tjEj(f)
p .

We now recall the following simple classical result, usually known as Ore’s
lemma.

Lemma 6.1. — Let f(t) ∈ K[[t]] be a nonzero algebraic power series. Then
there exists a positive integer r and polynomials P0, . . . , Pr in K[t] such that

r∑

i=0

Pif
pi = 0

and P0 6= 0.

Proof. — Since f is algebraic,
{
f, fp, fp

2
, . . .

}
is linearly dependent overK(t).

There thus exists a natural number r and polynomials P0, . . . , Pr in K[t] such
that

r∑

i=0

Pif
pi = 0 .

It remains to prove that one can choose P0 6= 0. Let k be the smallest non-
negative integer such that f satisfies a relation of this type with Pk 6= 0. We
shall prove that k = 0 which will end the proof. We assume that k > 0 and we
argue by contradiction. Since Pk 6= 0, we infer from Equality (6.7) that there

exists a d-tuple j ∈ Σd
p such that Ej(Pk) 6= 0. Since

∑r
i=k Pif

pi = 0, we have

Ej

(
r∑

i=k

Pif
pi

)
=

r∑

i=k

Ej

(
Pif

pi
)
=

r∑

i=k

Ej (Pi) f
pi−1

= 0 .

We thus obtain a new relation of the same type but for which the coefficient

of fp
k−1

is nonzero. This provides a contradiction with the definition of k.

We now let Ω denote the semigroup generated by the collection of the Cartier
operators Ej and the identity operator under composition. We let Ω(f) denote
the orbit of f under the action of Ω, that is,

Ω(f) := {E(f) | E ∈ Ω} .

As in the work of Harase [21] and of Sharif and Woodcock [38], the K-vector
space spanned by Ω(f) will play an important role. We will in particular need
the following auxiliary result based on Ore’s lemma.
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Lemma 6.2. — Let K be a perfect field of characteristic p, and let

f(t) :=
∑

n∈Nd

a(n)xn ∈ K[[t]]

be a nonzero algebraic function over K(t). Then there exists a natural number
m and there exist maps a1, . . . , am : Nd → K with the following properties.

(i) The formal power series fi(t) :=
∑

n∈Nd ai(n)t
n, 1 ≤ i ≤ m, form a

basis of the K-vector space spanned by Ω(f).
(ii) One has f1 = f .
(iii) Let g(t) :=

∑
n∈Nd b(n)tn be a power series that belongs to Ω(f). Then

b ◦ ej ∈ K ap1 + · · ·+K apm for every j ∈ {0, . . . , p− 1}d .

Proof. — Let f(t) ∈ K[[t]] be a nonzero algebraic power series. By Lemma
6.1, there exist a positive integer r and polynomials P0, . . . , Pr in K[t] such
that

r∑

i=0

Pif
pi = 0

and P0 6= 0. Set f̃ := P−1
0 f . Then

(6.8) f̃ =

r∑

i=1

Qif̃
pi ,

where Qi = −PiP
pi−2
0 . Set M := max{degP0,degQi | 1 ≤ i ≤ r} and

(6.9)

H :=

{
h ∈ K((t)) | h =

r∑

i=0

Rif̃
pi such that Ri ∈ K[t] and degRi ≤M

}
.

We first note that f belongs to H since f = P0f̃ and degP0 ≤ M . We also

observe that H is closed under the action of Ω. Indeed, if h :=
∑r

i=0Rif̃
pi ∈ H

and j ∈ {0, . . . , p− 1}d, then

Ej(h) = Ej

(
R0f̃ +

r∑

i=1

Rif̃
pi

)
= Ej

(
r∑

i=1

(R0Qi +Ri)f̃
pi

)

=
r∑

i=1

Ej(R0f̃ +Ri)f̃
pi−1

,

and since deg(R0Qi+Ri) ≤ 2M , we have degEj(R0Qi+Ri) ≤ 2M/p ≤M . It
follows that the K-vector space spanned by Ω(f) is contained in H and thus
has finite dimension, say m.

We can thus pick maps a1, . . . , am : Nd → K such that the m power series
fi(t) :=

∑
n∈Nd ai(n)t

n form a basis of Ω(f). Furthermore, since by assump-

tion f is a nonzero power series, we can chose f1 = f . Let b : Nd → K be such
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that g(t) :=
∑

n∈Nd b(n)tn belongs to Ω(f). Observe that the power series g
can be decomposed as

(6.10) g(t) =
∑

j∈{0,...,p−1}d

tjEj(g(t))
p .

By assumption, Ej(g(t)) ∈ K f1(t) + · · · + K fm(t) and hence Ej(g(t))
p ∈

K f1(t)
p+· · ·+K fm(t)p. Let j ∈ {0, 1, . . . , p−1}d. Considering the coefficient

of tpn+j in Equation (6.10), we see that b ◦ ej(n) is equal to the coefficient of
tpn in Ej(g(t))

p, which belongs to K a1(n)
p + · · ·+K am(n)p. This concludes

the proof.

We will also need the following lemma that says we will only have to work
with finitely generated extensions of the prime field instead of general fields of
characteristic p.

Lemma 6.3. — Let f1, . . . , fm be power series as in Lemma 6.2. Then there
is a finitely generated field extension K0 of Fp such that all coefficients of the
power series f1, . . . , fm belong to K0.

Proof. — Let f̃ :=
∑

n∈Nd ã(n)tn be defined as in Equation (6.8), that is,

(6.11) f̃ =

r∑

i=1

Qif̃
pi ,

Let also H be the K-vector space defined as in Equation (6.9), that is,
(6.12)

H =

{
h ∈ K((t)) | h =

r∑

i=0

Rif̃
pi such that Ri ∈ K[t] and degRi ≤M

}
.

Since H contains the K-vector space spanned by Ω(f), the power series
f1, . . . , fm belong to H. There thus exist a finite number of polynomials Ri,k

such that

fk =
r∑

i=0

Ri,kf̃
pi .

It thus remains to prove that there exists a finitely generated field extension
K0 of Fp such that all coefficients of f̃ belong to K0. Indeed, by adding to K0

all the coefficients of the polynomials Ri,k, we would obtain a finitely generated
field extension K1 of Fp such that all coefficients of the power series f1, . . . , fm
belong to K1.

Given a d-tuple n = (n1, . . . , nd), we set ‖n‖ := max(n1, . . . , nd). Let N
be a positive integer. We let K0 be the finitely generated extension of Fp

generated by the coefficients of Q1, . . . , Qr and the collection of coefficients of
tn in f̃(t) with ‖n‖ ≤ N . We claim that the coefficients of f̃ all lie in K0.
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We prove by induction on ‖n‖ that all coefficients ã(n) belongs to K0. By
construction, this holds whenever ‖n‖ ≤ N .

Suppose that the claim holds whenever ‖n‖ < M for some M > N and let
us assume that ‖n‖ = M . Then if we consider the coefficient of tn1

1 · · · tnd

d in
both sides of Equation 6.11, we get that

ã(n1, . . . , nd) ∈
r∑

i=1

∑

(m1,...,md)∈S

K0ã(m1, . . . ,md)
pi ,

where S is the (possibly empty) set of all d-tuples m := (m1, . . . ,md) ∈ Nd

such that either mi = 0 or mi < ni for each i ∈ {1, . . . , d}. Since M > 0, we
get that ‖m‖ < M and the inductive hypothesis implies that

r∑

i=1

∑

(m1,...,md)∈S

K0ã(m1, . . . ,md)
pi ⊆ K0 ,

and so ã(n1, . . . , nd) ∈ K0. This completes the induction and shows that all

coefficients of f̃ lie in K0.

Before proving Theorem 1.4, we first fix a few notions. Given a finitely

generated field extension K0 of Fp, we let K
〈p〉
0 denote the subfield consisting

of all elements of the form xp with x ∈ K0. Given Fp-vector subspaces U and
V of K0 we let V U denote the Fp-subspace of K0 spanned by all products of

the form vu with v ∈ V, u ∈ U . We let V 〈p〉 denote the Fp-vector subspace
consisting of all elements of the form vp with v ∈ V . We note that since K0 is

a finitely generated field extension of Fp, K0 is a finite-dimensionalK
〈p〉
0 -vector

space. If we fix a basis

K0 =

r⊕

i=1

K
〈p〉
0 hi

then we have projections π1, . . . , πr : K0 → K0 defined by

(6.13) x =

r∑

i=1

πi(x)
phi .

Remark 6.2. — For 1 ≤ i ≤ r and x, y, z ∈ K0 we have

πi(x
py + z) = xπi(y) + πi(z) .

The last ingredient we have to state before proving Theorem 1.4 is a rather
technical result, but very useful, due to Derksen, which we state here without
proof. It corresponds to Proposition 5.2 in [10]. Basically, we will prove an
effective version of this result later in Section 8 (step 2 in the proof of Theorem
1.5).
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Proposition 6.1 (Derksen). — Let K0 be a finitely generated field exten-
sion of Fp and let π1, . . . , πr : K0 → K0 be as in Equation (6.13). If U
is a finite-dimensional Fp-vector subspace of K0. Then there exists a finite-
dimensional Fp-vector subspace V of K0 containing U such that

πi(V U) ⊆ V

for all i such that 1 ≤ i ≤ r.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. — By enlarging K if necessary, we may assume that
K is perfect. By Lemma 6.2 we can find maps a1, . . . , am : Nd → K with the
following properties.

(i) The power series fi(t) :=
∑

n∈Nd ai(n)t
n, 1 ≤ i ≤ m, form a basis of the

K-vector space spanned by Ω(f).
(ii) One has f1 = f .
(iii) Let g(t) :=

∑
n∈Nd b(n)tn be a power series that belongs to Ω(f). Then

b ◦ ej ∈ K ap1 + · · ·+K apm for every j ∈ {0, . . . , p − 1}d .

In particular, given 1 ≤ i ≤ m and j ∈ {0, 1, . . . , p− 1}d, there are elements
λ(i, j, k), 1 ≤ k ≤ m, such that

(6.14) ai ◦ ej =
m∑

k=1

λ(i, j, k)apk .

Furthermore, by Lemma 6.3, there exists a finitely generated field extension
of Fp such that all coefficients of f1, . . . , fm are contained in this field ex-
tension. It follows that the subfield K0 of K generated by the coefficients
of f1(t), . . . , fm(t) and all the elements λ(i, j, k) is a finitely generated field
extension of Fp.

Since K0 is a finite-dimensional K
〈p〉
0 -vector space, we can fix a basis

{h1, . . . , hr} of K0, that is,

K0 =

r⊕

i=1

K
〈p〉
0 hi .

As already mentioned, we have projections π1, . . . , πr : K0 → K0 defined by

(6.15) x =

r∑

i=1

πi(x)
phi .

We let U denote the finite-dimensional Fp-vector subspace of K0 spanned by

the elements λ(i, j, k), 1 ≤ i, k ≤ m and j ∈ {0, 1, . . . , p − 1}d, and by 1. By
Equation (6.14), we have

(6.16) ai ◦ ej ∈ Uap1 + · · ·+ Uapm ,
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for 1 ≤ i ≤ m and j ∈ {0, 1, . . . , p−1}d. By Proposition 6.1 there exists a finite-
dimensional Fp-vector subspace V of K0 containing U such that πi(V U) ⊆ V
for 1 ≤ i ≤ r.

We now set

W := V a1 + · · ·+ V am ⊆ {b | b : Nd → K0} .

We note that since V is a finite-dimensional Fp-vector space, it is a finite set.

It follows that W is also a finite set since Card W ≤ ( Card V )d < ∞. Note
also that if ℓ ∈ {1, . . . , r}, i ∈ {1, . . . ,m}, and j ∈ {0, 1, . . . , p − 1}d then by
Equation (6.16) and Remark 6.2 we have

πℓ(V ai ◦ ej) ⊆ πℓ(V Ua
p
1 + · · · + V Uapm)

⊆ πℓ(V U)a1 + · · · + πℓ(V U)am

⊆ V a1 + · · ·+ V am .

By Remark 6.2, we obtain that

(6.17) bℓ := πℓ(b ◦ ej) ∈W

for all b ∈ W , j ∈ {0, 1, . . . , p − 1}d, and 1 ≤ ℓ ≤ r. Since {h1, . . . , hr} form a

basis of K0 as a K
〈p〉
0 -vector space, given x in K0, we have

x = 0 ⇐⇒ (πℓ(x) = 0 for all 1 ≤ ℓ ≤ r) .

In particular,

(6.18) b(pn+ j) = 0 ⇐⇒ b1(n) = b2(n) = · · · = br(n) = 0 .

Given a map b : Nd → K0, we define the map χb : N
d → {0, 1} by

(6.19) χb(n) =

{
0 if b(n) 6= 0

1 if b(n) = 0 .

Then we set
X := {χb1 · · ·χbt | t ≥ 0, b1, . . . , bt ∈W} .

We first get from Equation (6.18) that

(χb ◦ ej)(n) =
r∏

ℓ=1

χbℓ(n) .

Furthermore, we infer from Equation 6.17 that bℓ ∈ W for all b ∈ W , j ∈
{0, 1, . . . , p− 1}d, and 1 ≤ ℓ ≤ r. The definition of X then implies that χb ◦ ej
belongs to X. More generally, it follows that

(6.20) ∀χ ∈ X,∀e ∈ Σ, χ ◦ e ∈ X .

We note that by (6.19) we have χ2
b = χb for all b ∈ W . Since W is a finite

set, it follows that the set X is also finite. It thus follows from (6.20) and
Remark 6.1 that all maps χ in X are p-automatic. In particular, since by
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assumption a(n) = a1(n) ∈W , we deduce that the map χa is p-automatic. It
follows that the set

Z(f) =
{
n ∈ Nd | a(n) = 0

}

is a p-automatic set, which ends the proof.

7. Finite automata and effectivity

In this section, we define a classical measure of complexity for p-automatic
sets and we show how it can be used to prove effective results concerning such
sets. We follow the presentation of [10].

Definition 7.1. — Let S ⊂ Nd be a p-automatic set and let denote by K
the p-kernel of S. We define the p-complexity of S by

compp(S) := Card K .

The aim of this section is to state and prove the following result.

Proposition 7.1. — Let S ⊂ Nd be a p-automatic set and suppose that there
exists an explicit integer N(S) such that

compp(S) ≤ N(S) .

Suppose also that for every positive integer n one can compute (in a finite
amount of time) all the elements s ∈ S such that ‖s‖ ≤ n. Then the set S can
be effectively determined. Furthermore, the following properties are decidable.

(i) the set S is empty.

(ii) the set S is finite.

(iii) the set S is periodic, that is, formed by the union of a finite set and of a
finite number of (p-dimensional) arithmetic progressions.

In particular, when S is finite, one can find (in a finite amount of time) all
its elements.

Remark 7.1. — When we say that the set S can be effectively determined,
this means that there is an algorithm that produces in a finite amount of
time a p-automaton that generates S. The format of the output is thus a
6-tuple

(
Q,Σd

p, δ, q0, {0, 1}, τ
)
, where Q the set of states, δ : Q × Σd

k → Q is
the transition function, q0 is the initial state, and τ : Q→ {0, 1} is the output
function. Furthermore, there exists an algorithm that allows one to determine
in a finite amount of time whether S is empty, finite or whether S is formed by
the union of a finite set and of a finite number of (p-dimensional) arithmetic
progressions.
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We first make the important observation that for every positive integer N
there are only a finite number of p-automatic subsets of Nd whose p-complexity
is at most N .

Lemma 7.1. — Let N be a positive integer. Then there at most N2NNpN

distinct p-automatic subsets of Nd whose p-complexity is at most N .

Proof. — In the definition of p-automatic sets in Section 5, we used p-
automata that read the input (d-tuples of integers) starting from the most
significant digits (the input is scanned from the left to the right). It is well
known that using p-automata that read the input starting from the least sig-
nificant digits (the input is scanned from the right to the left) leads to the
same notion of p-automatic sets. Furthermore, it is known that for every p-
automatic set S, there exists such a p-automaton for which the number of
states is equal to the cardinality of the p-kernel of S. Such an automaton has
actually the minimal number of states among all automata recognizing S and
reading the input from the right to the left (see for instance [2] or [10]).

Thus a p-automatic set S ⊆ Nd with p-complexity at most N can be rec-
ognized by a p-automaton A (reading from the right to the left) with at most
N states. Let Q := {Q1, . . . , QN} denote the set of states of A. To define A,
we must choose the initial state, the transition function from Q × Σp to Q,
and the output function from Q to {0, 1}. We have at most N choices for the
initial state, at most NpN choices for the transition function, and at most 2N

choices for the output function. The result immediately follows.

Lemma 7.2. — Let S1, S2 ⊆ Nd be p-automatic sets. Then the following
hold.

• compp(S1 ∩ S2) ≤ compp(S1) compp(S2).

• compp(S1 ∪ S2) ≤ compp(S1) compp(S2).

• compp((S1 \ S2) ∪ (S2 \ S1)) ≤ compp(S1) compp(S2).

• compp(S1 \ (S1 ∩ S2)) ≤ compp(S1) compp(S2).

Proof. — Given a set S let us denote by IS its indicator function. The proof
follows from the fact that IS1∩S2 = IS1 · IS2 , IS1\S2

= IS1 · (1−IS2), IS1∪S2 =
IS1 + IS2 − IS1 · IS2 , I(S1\S2)∪(S2\S1) = IS1 · (1 − IS2) + IS2 · (1 − IS1), and
IS1\(S1∩S2) = IS1 · (1− IS1 · IS2).

We will also use the following two results that can be easily proved as in
[10].

Lemma 7.3. — Let S ⊆ Nd be a nonempty p-automatic set. Then

min {‖s‖ | s ∈ S} ≤ pcompp(S)−2 .
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Lemma 7.4. — Let S ⊆ Nd be a finite p-automatic set. If s ∈ S, then

‖s‖ ≤ pcompp(S)−2 .

We are now ready to prove Proposition 7.1.

Proof of Proposition 7.1. — Let S ⊆ Nd be a p-automatic set. Let us assume
that one knows an effective boundN(S) for the p-complexity of S and that one
can compute the initial terms of S. Let us also assume that for every positive
integer n one can compute (in a finite amount of time) all the elements s ∈ S
such that ‖s‖ ≤ n.

We first note that by Lemma 7.1 there are only a finite number, say r, of
p-automatic subsets of Nd with p-complexity at most N(S). Going through
the proof of Lemma 7.1, we can explicitly enumerate all these sets to get a
collection S1, S2, . . . , Sr.

Now for each Si, we can check whether S = Si as follows. Since both S and
Si have p-complexity at most N(S), we infer from Lemma 7.2 that

compp((S \ Si) ∪ (Si \ S)) ≤ compp(S) compp(Si) ≤ N(S)2 .

Thus, by Lemma 7.3, the set (S \ Si) ∪ (Si \ S) is empty if and only if it has

no element up to pN(S)2−2. This implies that S = Si if and only if

S ∩
{
n ∈ Nd | ‖n‖ ≤ pN(S)2−2

}
= Si ∩

{
n ∈ Nd | ‖n‖ ≤ pN(S)2−2

}
.

By assumption, this can be verified in a finite amount of time.

(i). Since the p-complexity of S is at most N(S), Lemma 7.3 implies that S
is empty if and only if

S ∩
{
n ∈ Nd | ‖n‖ ≤ pN(S)2−2

}
= ∅ .

By assumption, this can be verified in a finite amount of time.

(ii). Since the p-complexity of S is at most N(S), Lemma 7.4 implies that S
is finite if and only if

S = S ∩
{
n ∈ Nd | ‖n‖ ≤ pN(S)2−2

}
.

Set S′ :=
{
n ∈ Nd | ‖n‖ ≤ pN(S)2−2

}
. Thus S is finite if and only if the set

(7.21) S \
(
S ∩ S′

)
= ∅ .

On the other hand, it is easy to see that S′ is a p-automatic set with complexity

at most (pN(S)2−2 + 1)d. By Lemma 7.2, we deduce that

compp
(
S \

(
S ∩ S′

))
≤ compp(S) compp(S

′) ≤ N(S)
(
pN(S)2−2 + 1

)d
.
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This shows, using (i), that one can check whether Equality (7.21) is satisfied
in a finite amount of time.

(iii). We have already shown that we can explitly determine a p-automaton
that recognized S, since the p-complexity of S is at most N(S). Then a
classical result of Honkala [22] shows that one can check whether such set is
periodic, that is, whether S is the union of a finite set and a finite number of
(p-dimensional) arithmetic progressions.

Finally, to obtain all the elements of S when S is finite one can proceed as
follows. First, one can check that S is finite as in (ii). Once this has been
done, one knows that S is finite and thus Lemma 7.4 implies that

S = S ∩
{
n ∈ Nd | ‖n‖ ≤ pN(S)2−2

}

since S has complexity at most N(S). By assumption, all the elements of S
can thus be determined in a finite amount of time. This ends the proof.

8. Proof of Theorem 1.5

The aim of this section is to show how each step of the proof of Theorem
1.4 can be made effective.

We first recall some notation. Given a polynomial P (X) ∈ K[t][X], we
define the height of P as the maximum of the degrees of the coefficient of P .
The (naive) height of an algebraic power series

f(t) =
∑

n∈N

a(n)tn ∈ K[[t]]

is then defined as the height of the minimal polynomial of f , or equivalently,
as the minimum of the heights of the nonzero polynomials P (X) ∈ K[t][X]
that vanishes at f .

We first prove the following effective version of Ore’s lemma.

Lemma 8.1. — Let s and H be two positive integers and let f(t) ∈ K[[t]]
be an algebraic power series of degree at most s and height at most H. Then
there exist polynomials Q0, . . . , Qs ∈ K[t] with degree at most Hsps such that

s∑

i=0

Qi(t)f(t)
pi = 0

and Q0 6= 0.

In order to prove Lemma 8.1, we will need the following auxiliary result.
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Lemma 8.2. — Let s be a natural number and let V0, . . . , Vs be s+1 vectors
in K[t]s such that each coordinate has degree at most r. Then there exist
Q0(t), . . . , Qs(t) in K[t] of degree at most rs, not all of which are zero, such
that

s∑

i=0

QiVi = 0 .

Proof. — Let e denote the size of a maximally linearly independent subset of
V0, . . . , Vs. By relabelling if necessary, we may assume that V0, . . . , Ve−1 are
linearly independent. Let A denote the s × e matrix whose (j + 1)th column
is Vj. Then by reordering the coordinates of our vectors if necessary, we may
assume that the e× e submatrix B of A obtained by deleting the bottom d− e
rows of A is invertible. Let V ′

s denote the vector in K[t]e obtained by deleting
the bottom d − e coordinates of Vs. Then there is a unique vector X that is
solution to the matrix equation

BX = V ′
s .

Moreover, by Cramer’s rule, the ith coordinate of X is the polynomial Xi

defined by

Xi(t) := det(Bi)/det(B) ,

where Bi is the e× e matrix obtained by replacing the ith column of B by V ′
s .

For 0 ≤ i ≤ e− 1, we set

Qi(t) := − det(Bi) .

We also set

Qs(t) := det(B) .

Since the entries of Bi and B are all polynomials of degree at most r, we
obtain that these polynomials have degree at most re ≤ rs. Furthermore, by
construction

e−1∑

i=0

XiVi = Vs .

Letting Qi(t) = 0 for e ≤ i < s, we obtain that

s∑

i=0

QiVi = 0

and each Qi has degree at most rs, as required.

We are now ready to prove Lemma 8.1.



37

Proof of Lemma 8.1. — By assumption, there exist polynomials P0(t),
. . . , Ps(t) ∈ K[t] of degree at most H such that

s∑

i=0

Pi(t)f(t)
i = 0

and Ps(t) 6= 0.
Let V denote theK(t)-vector space spanned by 1, f, . . . , f s−1. For 1 ≤ i ≤ s,

let ei denote the standard unit d × 1 vector in K(t)s whose jth coordinate
is equal to the Kronecker delta δij . Then we have a surjective linear map
T : K(t)s → V in which we send the vector ei to f

i−1. Let V =
∑s

i=1 T (ei)ei ∈
K(t)s and let

M :=




0 0 0 · · · 0 −X0(t)
1 0 0 · · · 0 −X1(t)
0 1 0 · · · 0 −X2(t)
...

...
...

. . . · · ·
...

0 · · · 0 1 0 −Xs−2(t)
0 0 · · · 0 1 −Xs−1(t)




∈Ms(K(t)) ,

where Xi(t) := Pi(t)/Ps(t) for i = 0, 1, . . . , s − 1. Then

T (Mne1) = f(t)n .

Notice that Mn = Ps(t)
−nCn where Cn is a matrix in Ms(K[t]) whose entries

have degree at most nH. Then to find a relation of the form
s∑

i=0

Qi(t)f(t)
pi = 0 ,

it is enough to find a vector

[Q0(t), . . . , Qs(t)] ∈ K[t]1×d

such that

(8.22) Ps(t)
psQ0(t)e1 + Ps(t)

ps−pQ1(t)Cpe1 + · · ·+Qs(t)Cpse1 = 0 .

For 0 ≤ j ≤ s, we set

(8.23) Vj := Ps(t)
ps−pjCpje1 .

We note that Vj is a vector in K[t]s such that each coordinate has de-
gree at most Hps. Then Lemma 8.2 ensures the existence of polynomials
Q0(t), . . . , Qs(t) in K[t] of degree at most sHps, not all of which are 0, and
such that

s∑

j=0

QjVj = 0 .
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We deduce from Equations (8.22) and (8.23) that

(8.24)

s∑

j=0

Qj(t)f
pj(t) = 0 .

It thus remains to show that we can choose our polynomials Q0, . . . , Qs such
that Q0 is nonzero. To see this, we let k denote the smallest index such that
we have a relation of the form given in Equation (8.24) with the degrees of
Q0, . . . , Qs all bounded above by sHps and such that Qk is nonzero. If k is
equal to zero, we are done.

We now assume that k > 0 and we argue by contradiction. Since Qk 6= 0,
we infer from Equality (6.7) that there exists a d-tuple j ∈ Σd

p such that

Ej(Qk) 6= 0. Since
∑s

i=kQif
pi = 0, we have

Ej

(
s∑

i=k

Qif
pi

)
=

s∑

i=k

Ej

(
Qif

pi
)
=

s∑

i=k

Ej (Qi) f
pi−1

= 0 .

Furthermore, one can observe that, for k ≤ i ≤ s, the polynomial Ej(Qi) has
degree at most sHps. We thus obtain a new relation of the same type but for

which the coefficient of fp
k−1

is nonzero, which contradicts the minimality of
k. This ends the proof.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. — We first explain our strategy. We assume that
f(t) ∈ K[[t]] is an algebraic function and that we know an explicit poly-
nomial P (X) ∈ K[t][X] that vanishes at f . Note that from the equation
P (f) = 0, one can obviously derive explicit effective bounds of the degree and
of the height of f . Then we will show how the proof of Theorem 1.4 allows
us to derive an effective upper bound for compp(Z(f)). It will thus follows
from the results of Section 7 that one can effectively determined the set Z(f)
only by looking at the first coefficients of f (which can be computed in a finite
amount of time by using the equation P (f) = 0).

Let us assume that the degree of f is bounded by s and that the height of f
is bounded by H. In order to get an effective upper bound for compp(Z(f)),
we have to give effective upper bounds for the cardinality of the sets U, V,W
and X introduced all along the proof of Theorem 1.4.

Step 1. In this first step we show how to obtain an effective upper bound for
the dimension m of the K-vector space spanned by Ω(f). We then deduce an
effective upper bound for the cardinality of the Fp-vector space U .

This can be deduced from our effective version of Ore’s lemma. Indeed, by
Lemma 6.1, one can find polynomials Q0, . . . , Qs ∈ K[t] with degree at most
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Hsps such that
s∑

i=0

Qi(t)f(t)
pi = 0

and Q0 6= 0. We set f̃ := Q−1
0 f . Then

(8.25) f̃ =
s∑

i=1

Rif̃
pi ,

where Ri = −QiQ
pi−2
0 . Then each Ri has degree at most Hsps(pi − 1). Set

M := Hsps(ps − 1) and
(8.26)

H :=

{
h ∈ K((t)) | h =

s∑

i=0

Sif̃
pi such that Si ∈ K[t] and degSi ≤M

}
.

Furthermore, H is a K-vector space of dimension at most

(s+ 1)

(
M + d

M

)
.

Just as in the proof of Lemma 6.2, one can check that f belongs to H and that
H is closed under the action of Ω. It follows that the K-vector space spanned
by Ω(f) is contained in H. There thus exists an effective constant N0 :=

(s+ 1)
(
M+d
M

)
such that the K-vector space spanned by Ω(f) has dimension

(8.27) m ≤ N0 .

We recall that K0 denotes the subfield of K generated by the coefficients of
f1 . . . , fm and all the elements λ(i, j, k) 1 ≤ i, k ≤ m and j ∈ {0, 1, . . . , p −
1}d, and that U is defined as the finite-dimensional Fp-vector subspace of K0

spanned by the elements λ(i, j, k), 1 ≤ i, k ≤ m and j ∈ {0, 1, . . . , p− 1}d, and
by 1. We thus deduce from (8.27) that there exist an effective upper bound

N1 := p1+pdN2
0 such that

(8.28) Card(U) ≤ N1 .

Step 2. From Derksen’s proposition (Proposition 6.1), we know that there
exists a finite-dimensional Fp-vector subspace V of K0 containing U such that
πi(V U) ⊆ V for 1 ≤ i ≤ r. In this second step, we show how to obtain an
effective upper bound for the cardinality of such a vector space V .

In the proof of Lemma 6.3, we have shown that K0 is a finitely generated
field extension of Fp that can be generated by the λ(i, j, k) and the coefficients
of a finite number of some explicit polynomials. We write

K0 = Fp(X1, . . . ,Xr)(a1, . . . , as) ,
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where X1, . . . ,Xr are algebraically independent over Fp and a1, . . . , as form
a basis for K0 as an Fp(X1, . . . ,Xr)-vector space; moreover, we may assume
that for each i and j, we have aiaj is an Fp(X1, . . . ,Xr)-linear combination
of a1, . . . , as in which the numerators and denominators of the coefficients are
polynomials in Fp[X1, . . . ,Xr] whose degrees are uniformly bounded by some
explicit constant N2.

Let T1, . . . , Tn denote such a set of generators of K0 with the following
properties.

(i) Ti = Xi for i ≤ r.
(ii) Tr+j = aj for j ≤ s.
(iii) Tn = 1.
(iv) {T1, . . . , Tn} contains all the λ(i, j, k).

Note that from Step 1 and the proof of Lemma 6.3 we can obtain an explicit
upper bound for the integer n.

An easy induction shows that for 1 ≤ j ≤ s, apj is an Fp(X1, . . . ,Xr)-linear
combination of a1, . . . , as in which the coefficients are rational functions whose
numerators and denominators have degrees uniformly bounded by

(8.29) N3 := N2

(
2sp−2 +

sp−2 − s

s− 1

)
.

We now regard K0 as an s-dimensional Fp(X1, . . . ,Xr)-vector space. Then we
may regard the Fp(X1, . . . ,Xr)-span of ap1, . . . , a

p
s as a subspace of

Fp(X1, . . . ,Xr)
s

spanned by s vectors whose coordinates are rational functions whose nu-
merators and denominators have degrees uniformly bounded by N3. We
can effectively compute the dimension of this space and a basis. We let t
denote the dimension of this vector space and by relabelling if necessary,
we may assume that ap1, . . . , a

p
t form a basis. Then there exist ℓ1, . . . , ℓs−t

such that {ap1, . . . , a
p
t , aℓ1 , . . . , aℓs−t

} forms a basis for K0 as a Fp(X1, . . . ,Xr)-
vector space. Moreover, using Cramer’s rule, we can express each aj as a
Fp(X1, . . . ,Xr)-linear combination of ap1, . . . , a

p
t , aℓ1 , . . . , aℓs−t

in which the nu-
merators and denominators have degrees uniformly bounded by

(8.30) N4 := 2N3st .

To see this, let φ : K0 → Fp(X1, . . . ,Xr)
s be the Fp(X1, . . . ,Xr)-linear isomor-

phism which sends ai to the vector with a 1 in the ith coordinate and zeros
in all other coordinates. Let A denote the s× s matrix whose ith row is equal
to φ(api ) for i ≤ t and is equal to φ(aℓt−i

) for i > t. Then the entries of A
are rational functions whose numerators and denominators have degrees that
are uniformly bounded by N3. Note that expressing aj as a Fp(X1, . . . ,Xr)-
linear combination of ap1, . . . , a

p
t , aℓ1 , . . . , aℓt−s

is the same as solving the matrix
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equation

Ax = ej ,

where ej is the vector whose jth coordinate is 1 and whose other coordi-
nates are 0. By Cramer’s rule, the ith coordinate of x is a ratio of two
s × s determinants, each of which have entries which are rational functions
in Fp(X1, . . . ,Xr) whose numerators and denominators have degrees that are
uniformly bounded by N3, and such that the bottom s − t rows consist of
constants. Note that the determinant of an s × s matrix whose entries are
rational functions is a rational function; moreover, we can take the denomina-
tor to be the product of the denominators of the entries. Since our matrices
have a total of st entries which are not constant, we obtain a bound of N3st
for the degrees of the denominators of our determinants. It is easy to check
that this bound applies to the degrees of the numerators as well. When we
take a ratio of these determinants, this can at most double this bound on the
degrees of the numerators and denominators. Thus we can express each aj as
a Fp(X1, . . . ,Xr)-linear combination of ap1, . . . , a

p
t , aℓ1 , . . . , aℓt−s

in which the
degrees of the numerators and denominators are uniformly bounded by 2N3st,
as claimed.

Notice that

S :=
{
T i1
1 · · ·T in

n | 0 ≤ i1, . . . , in < p
}

spans K0 as a K
〈p〉
0 -vector space. Observe also that every polynomial Q ∈

Fp[T1, . . . , Tn] can be decomposed as

(8.31) Q =
∑

f∈S

Qp
ff ,

where the Qf are polynomials in Fp[T1, . . . , Tn] of degree at most ⌊degQ/p⌋.
Let us choose S0 to be the subset of S corresponding to the monomials from

the set formed by the union of
{
Xi1

1 · · ·Xir
r | 0 ≤ i1, . . . , ir < p

}

and {
Xi1

1 · · ·Xir
r aℓj | 0 ≤ i1, . . . , ir < p, 1 ≤ j ≤ s− t

}
.

Then S0 is a basis for K0 as a K
〈p〉
0 -vector space. Thus for T i1

1 · · ·T in
n ∈ S, we

have

T i1
1 · · · T in

n =
∑

h∈S0

αp
h,i1,...,in

h
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for some coefficients αh,i1,...,in ∈ K0. We may pick some nonzero polynomial
H(T1, . . . , Tn) such that

(8.32) H(T1, . . . , Tn)
pT i1

1 · · ·T in
n =

∑

h∈S0

Ap
h,i1,...,in

h ,

where

Ah,i1,...,in ∈ Fp[T1, . . . , Tn]

for all

(h, i1, . . . , in) ∈ S0 × {0, 1, . . . , p− 1}n .

We let

(8.33) M ′ := max {degH, degAh,i1,...,in}

where the maximum is taken over all

(h, i1, . . . , in) ∈ S0 × {0, 1, . . . , p− 1}n .

We claim that it is possible to obtain an effective upper bound forM ′, once the
set of generators and the basis are known. To see this, note that we write Ti =∑s

j=1 φi,j(X1, . . . ,Xr)as, where each φi,j is a rational function in X1, . . . ,Xr,
where we assume that the degrees of the numerators and denominators of the
φi,j are uniformly bounded by some explicit constant N5.

Note that by construction, a monomial T i1
1 · · ·T in

n with 0 ≤ i1, . . . , in < p is
an Fp(X1, . . . ,Xr)-linear combination of a1, . . . , as in which the coefficients are
rational functions whose numerators and denominators have degrees uniformly
bounded by

(8.34) N6 := (N2 +N5)(p − 1)ns2(p−1)n .

To see this, we claim more generally that a monomial T j1
1 · · ·T jn

n can be ex-
pressed as a Fp(X1, . . . ,Xr)-linear combination of a1, . . . , as in which the coeffi-
cients are rational functions whose numerators and denominators have degrees
uniformly bounded by

(N2 +N5)(j1 + · · ·+ jn)s
2(j1+···+jn) .

We prove this by induction on j1 + · · ·+ jn. When j1 + · · ·+ jn = 1, the claim
is trivially true. So we assume that the claim holds whenever j1+ · · ·+ jn < k
and we consider the case that j1 + · · ·+ jn = k. Then ji ≥ 1 for some i. Thus
we may write

T j1
1 · · ·T jn

n = Ti · T
j1
1 · · ·T ji−1

i · · ·T jn
n .

By the inductive hypothesis,

T j1
1 · · ·T ji−1

i · · · T jn
n =

s∑

ℓ=1

ψℓaℓ ,
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where each ψℓ is a rational function whose numerator and denominator have
degrees bounded by (N2 +N5)(k − 1)s2k−2. Thus

Ti · T
j1
1 · · ·T ji−1

i · · ·T jn
n

=




s∑

j=1

φi,jaj



(

s∑

ℓ=1

ψℓaℓ

)

=
∑

1≤j,ℓ≤s

(φi,jψℓ)ajaℓ .

Recall that by assumption each ajaℓ is a Fp(X1, . . . ,Xr)-linear combination
of a1, . . . , as in which the degrees of the numerators and denominators are
uniformly bounded by N2. Thus the coefficient of each aj is a linear combina-
tion consisting of s2 terms whose numerators and denominators have degrees
bounded by N5+(N2+N5)(k− 1)s2k−2+N2 and hence can be expressed as a
rational function whose numerator and denominator have degrees bounded by
(N2 +N5)(1 + (k − 1)s2k−2)s2 ≤ (N2 +N5)ks

2k. This gives the bound (8.34),
as claimed.

Then we may write

T i1
1 · · ·T in

n =
s∑

j=1

Cj(X1, . . . ,Xr)

D(X1, . . . ,Xr)p
aj ,

where C1, . . . , Cs,D are polynomials of degree at most N6sp. Furthermore, we
showed in (8.30) that each aj can be written as a Fp(X1, . . . ,Xs)-linear combi-
nation of {ap1, . . . , a

p
t , aℓ1 , . . . , aℓs−t

} in which the coefficients have numerators
and denominators uniformly bounded by N4. Thus we may write

T i1
1 · · ·T in

n =

t∑

j=1

Ĉj(X1, . . . ,Xr)

D̂(X1, . . . ,Xr)p
apj +

s−t∑

j=1

Ĉj(X1, . . . ,Xr)

D̂(X1, . . . ,Xr)p
aℓj ,

where Ĉ1, . . . , Ĉs, D̂ have degrees bounded by

(N4 +N6)sp .

Since S0 forms a basis for K
〈p〉
0 , this ensures that

(8.35) M ′ ≤ (N4 +N6)sp+ p .

Now, we set

(8.36) U0 := FpH
−1 +

n∑

j=1

FpTj .
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Since {1} ∪
{
λi,j,k | 1 ≤ i, k ≤ m, j ∈ {0, 1, . . . , p− 1}d

}
⊆ {T1, . . . , Tn}, we

have

(8.37) U ⊆ U0 .

Let k be a positive integer. We infer from (8.36) that Uk
0 is contained in

the Fp-vector space spanned by the set

K :=

{
H−j0T j1

1 · · ·T jn
n |

n∑

i=0

ji ≤ k

}
.

Then, every element L of K can be written as

(8.38) L = H−pi0(HℓT j1
1 · · ·T jn

n ) =: H−p(i0+1)HpQ

where Q := HℓT j1
1 · · ·T jn

n , 0 ≤ ℓ < p, 0 ≤ i0 ≤ ⌊k/p⌋ and
∑n

i=1 ji ≤ k − pi0.
Thus Q is a polynomial in Fp[T1, . . . , Tn] of degree at most (p degH+k−pi0).
By (8.31), Q can be decomposed as

Q =
∑

f∈S

Qp
ff ,

whereQf are polynomials in Fp[T1, . . . , Tn] of degree at most degH+⌊k/p⌋−i0.
We deduce that

H−(i0+1)Qf ∈ U
M ′+⌊k/p⌋+1
0 .

Thus we have

(8.39) HpQ =
∑

f∈S

Qp
f (H

pf) .

Furthermore, by assumption, for f ∈ S

(8.40) Hpf ∈
⊕

h∈S0

(UM ′

0 )〈p〉h .

We infer from (8.38), (8.39) and (8.40) that

L ∈
⊕

h∈S0

(U
2M ′+⌊k/p⌋+1
0 )〈p〉h

and thus

Uk
0 ⊆

⊕

h∈S0

(U
2M ′+⌊k/p⌋+1
0 )〈p〉h .

Let k0 := ⌊2(M ′ + 1)p/(p − 1)⌋ + 1 and set V := Uk0−1
0 . This choice of k0

implies that πi(V U) ⊆ V . Furthermore, U ⊆ V and the cardinality of V is

bounded by Card Uk0−1
0 ≤ ( Card U0)

k0−1 ≤ p(n+1)(k0−1). Since one could
find an effective upper bound for n and since Inequality (8.35) provides an
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effective upper bound for M ′ (and thus for k0), we obtain that there exists an
effective constant N7 such that

Card V ≤ N7 .

Step 3. In this last step, we show how to derive from Step 2 effective upper
bounds for the cardinality of the sets W and X, from which we will finally
deduce an effective upper bound for ComppZ(f).

We just show that it is possible to get an effective upper bound N7 for the
cardinality of the Fp-vector space V . We now recall that the set W is defined
by

W := V a1 + · · ·+ V am .

We thus have Card W ≤ ( Card V )m, and we infer from (8.27) that there

exists an effective constant N8 := NN0
7 such that

(8.41) Card W ≤ N8 .

We recall that given a map b : Nd → K0, the map χb : N
d → {0, 1} is defined

by

(8.42) χb(n) =

{
0 if b(n)6=0

1 if b(n) = 0 .

We recall that the set X is defined by

X := {χb1 · · ·χbt | t ≥ 0, b1, . . . , bt ∈W} .

Since χ2
b = χb for all b ∈W and since the product of maps χb is commutative,

we get that

Card X ≤ 2 Card W .

Thus we infer from (8.41) the existence of an effective constant N9 := 2N8 such
that

Card X ≤ N9 .

On the other hand, the proof of Theorem 1.4 shows that the p-kernel of Z(f)
is contained in X, which implies that

compp(Z(f)) ≤ N9 .

This ends the proof.
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9. Concluding remarks

We end our paper with a few comments. We note that Derksen [10] also
proved a refinement of his Theorem 1.2. Let us state his result. Let p be a
prime number and let q be a power of p. Given c0, . . . , cd ∈ Q∗ with (q−1)ci ∈
Z for i ∈ {1, . . . , d} and c0 + · · ·+ cd ∈ Z, we define

S̃q(c0, . . . , cd) :=
{
c0 + c1q

i1 + · · ·+ cdq
id | i1, . . . , id ≥ 0

}

and we take
Sq(c0, . . . , cd) := N ∩ S̃q(c0, . . . , cd) .

If ci > 0 for some i ∈ {1, . . . , d}, we say that Sq(c0, . . . , cd) is an elementary p-
nested set of order d. We say that a subset of the natural numbers is p-nested
of order d if it is a finite union of elementary p-nested sets of order at most d
with at least one set having order exactly d. We then say that a subset of the
natural numbers is p-normal of order d if it is, up to a finite set, the union of
a finite number of arithmetic progressions along with a p-nested set of order
d. Derksen [10, Theorem 1.8] proved that the zero set of a linear recurrence
of order d is a p-normal set of order at most equal to d − 2. Of course, this
refines the fact that such a set is p-automatic.

We already observed in the introduction that Theorem 1.4 is in some sense
best possible since any p-automatic subset of Nd can be obtained as the set of
vanishing coefficients of an algebraic power series in Fp[[t1, . . . , td]]. However,
one might hope that a refinement, involving a reasonable version of multidi-
mensional p-normal set, could hold if we restrict our attention to multivariate
rational functions. This is actually not the case. Even for bivariate rational
functions over finite fields, the set of vanishing coefficients can be rather patho-
logical. Indeed, Furstenberg [18] showed that the diagonal of a multivariate
rational power series with coefficients in a field of positive characteristic is an
algebraic power series in one variable(∗). Moreover, the converse holds for any
field: any one variable algebraic power series can be obtained as the diago-
nal of a bivariate rational power series(∗). In light of Christol’s theorem, this
implies in particular that any p-automatic subset of N can be realized as the
diagonal of the set of vanishing coefficients of a bivariate rational power series
with coefficients in Fp.

Nevertheless, we may imagine that a similar refinement of Theorem 1.4
does exist for the special rational functions that appear in the Diophantine
applications given in Sections 2, 3 and 4. Finally, since these applications only

(∗)Deligne [8] generalized this result to diagonals of algebraic power series with coefficients
in a field of positive characteristic.
(∗)This result is essentially proved in [18]. Denef and Lipshitz [9] actually obtained the
following stronger result: any algebraic power series in n variables with coefficients in an
arbitrary field can be obtained as the diagonal of a rational power series in 2n variables.
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involve multivariate rational functions, it would be interesting to find natural
Diophantine problems that would involve some sets of vanishing coefficients of
algebraic irrational multivariate power series.

Addendum. — During the last stage of the writing of this paper, the authors
learned about a related work (though not written in terms of automata) of
Derksen and Masser [11]. These authors obtain in particular strong effective
results for the general S-unit equations over fields of positive characteristic
and more generally for the Mordell–Lang theorem, in the special case of linear
subvarieties of Gn

m(K) for fields K of positive characteristic.

Acknowledgement. — The authors would like to thank Jean-Paul Allouche,
David Masser and the anonymous referees for their useful remarks. They are
also indebted to Gaël Rémond for his interesting comments concerning the
relation between Theorem 4.1 and Corrolary 4.1. The first author is also most
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