Convex Relaxation for Combinatorial Penalties - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2012

Convex Relaxation for Combinatorial Penalties

Résumé

In this paper, we propose an unifying view of several recently proposed structured sparsity-inducing norms. We consider the situation of a model simultaneously (a) penalized by a set- function de ned on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in Lp-norm. We show that the natural combinatorial optimization problems obtained may be relaxed into convex optimization problems and introduce a notion, the lower combinatorial envelope of a set-function, that characterizes the tightness of our relaxations. We moreover establish links with norms based on latent representations including the latent group Lasso and block-coding, and with norms obtained from submodular functions.
Fichier principal
Vignette du fichier
hal_submodlp_ready.pdf (825.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00694765 , version 1 (06-05-2012)

Identifiants

Citer

Guillaume Obozinski, Francis Bach. Convex Relaxation for Combinatorial Penalties. [Research Report] INRIA. 2012. ⟨hal-00694765⟩
334 Consultations
825 Téléchargements

Altmetric

Partager

More