Single switch surface hopping for molecular dynamics with transitions
Abstract
A trajectory surface hopping algorithm is proposed, which sterns from a mathematically rigorous analysis of propagation through conical intersections of potential energy surfaces. Since nonadiabatic transitions are only performed when a classical trajectory attains one of its local minimal surface gaps, the algorithm is called single switch surface hopping. Numerical experiments for a two mode Jahn-Teller system are presented, which illustrate the asymptotic justification of the method as well as its good performance in the physically relevant parameter range. (c) 2008 American Institute of Physics.