On the volume product of polygons
Abstract
We present a method that allows us to prove that the volume product of polygons in a"e(2) with at most n vertices is bounded from above by the volume product of regular polygons with n vertices. The same method shows that the volume product of polygons is bounded from below by the volume product of triangles (or parallelograms in the centrally symmetric case). These last results give a new proof of theorems of K. Mahler. The cases of equality are completely described.