Systematic Theoretical Investigation on the Light Emitter of Firefly
Résumé
This is a systematic theoretical investigation on all the possible light emitters of firefly using a multireference method. Six chemical forms of oxyluciferin (OxyLH(2)) molecules/anions were studied by a multistate complete active space second-order perturbation (MS-CASPT2) method in vacuum and dimethyl sulfoxide. The calculated results and subsequent analysis excluded enol-OxyLH(2), keto-OxyLH(2), and enolate-OxyLH(-) as possible light emitters. The remaining three candidates, phenolate-enol-OxyLH(-), phenolate-keto-OxyLH(-), and OxyL(2-), were further investigated in protein by a MS-CASPT2/molecular mechanics (MM) study to explain the natural bioluminescence of firefly. By comparison of the MS-CASPT2/MM calculated results of phenolate-enol-OxyLH(-), phenolate-keto-OxyLH(-), and OxyL(2-) with the experimental observation and detailed analysis, we concluded that the direct decomposition excited-state product of firefly dioxetanone in vivo and the only light emitter of firefly in natural bioluminescence is the first singlet excited state (S(1)) of phenolate-keto-OxyLH(-).