Optimal convergence analysis for the extended finite element method - Archive ouverte HAL Access content directly
Journal Articles International Journal for Numerical Methods in Engineering Year : 2011

Optimal convergence analysis for the extended finite element method

Abstract

We establish some optimal a priori error estimate on some variants of the eXtended Finite Element Method (Xfem), namely the Xfem with a cut-off function and the standard Xfem with a fixed enrichment area. The results are established for the Lame system (homogeneous isotropic elasticity) and the Laplace problem. The convergence of the numerical stress intensity factors is also investigated. We show some numerical experiments which corroborate the theoretical results.
Fichier principal
Vignette du fichier
2009_opt_xfem.pdf (408.36 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00339853 , version 1 (19-11-2008)
hal-00339853 , version 2 (06-06-2018)

Licence

Attribution

Identifiers

Cite

Serge Nicaise, Yves Renard, Elie Chahine. Optimal convergence analysis for the extended finite element method. International Journal for Numerical Methods in Engineering, 2011, 86, pp.528-548. ⟨10.1002/nme.3092⟩. ⟨hal-00339853v2⟩
500 View
863 Download

Altmetric

Share

Gmail Facebook X LinkedIn More