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We establish some optimal a priori error estimate on some variants of the eXtended Finite Element Method (Xfem), namely the Xfem with a cut-off function and the standard Xfem with a fixed enrichment area. The results are established for the Lamé system (homogeneous isotropic elasticity) and the Laplace problem. The convergence of the numerical stress intensity factors is also investigated. We show some numerical experiments which corroborate the theoretical results.

Introduction

Inspired by the Pufem [START_REF] Melenk | The partition of unity finite element method: Basic theory and applications[END_REF], the Xfem (extended finite element method) was introduced by Moës et al. in 1999 [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Moës | X-FEM: Nouvelles Frontières Pour les Eléments Finis[END_REF] for plane linear isotropic elasticity problems (Lamé system) in cracked domains. The main advantage of this method is the ability to take into account the discontinuity across the crack and the asymptotic displacement at the crack tip by addition of special functions into the finite element space. It allows the use of a mesh which is independent of the geometry of the crack. This avoids the remeshing operations when the crack propagates and the corresponding re-interpolation operations which can cause numerical instabilities. In the original method, the asymptotic displacement is incorporated into the finite element space multiplied by the shape function of a background Lagrange finite element method. However, we deal also with a variant, introduced in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF], where the asymptotic displacement is multiplied by a cut-off function. This variant is similar to the classical singular enrichment method introduced in 1973 by Strang and Fix [START_REF] Strang | An Analysis of the Finite Element Method[END_REF] but it additionally preserves the independence of the mesh to the geometry of the crack which is indeed the essential contribution of Xfem.

Another classical method to take into account a singular behavior of the solution is the dual singular function method introduced by M. Dobrowolski et al. in [START_REF] Blum | On finite element methods for elliptic equations on domains with corners[END_REF] (see also [START_REF] Dobrowolski | Numerical approximation of elliptic interface and corner problems[END_REF][START_REF] Bourlard | Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III. Finite element methods on polygonal domains[END_REF]) or a more recent variant the singular complement method introduced by P. Ciarlet Jr. et al. in [START_REF] Ciarlet | The singular complement method for 2d scalar problems[END_REF] (for a L-shape domain, see [START_REF] Moussaoui | Sur l'approximation des solutions du problème de Dirichlet dans un ouvert avec coins[END_REF]). These methods require the use of dual singular functions which can be difficult to obtain in some situations (even for the Lamé system) or quite impossible to obtain when just the asymptotic behavior is known (for non-linear elasticity [START_REF] Arfaoui | An Asymptotic finite plane deformation analysis of the elastostatic fields at a notch vertex of an incompressible hyperelastic material[END_REF] or Mindlin plate model for instance).

The Xfem strategy can be adapted to various situations. See among many other references [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF][START_REF] Bordas | A simulation-based design paradigm for complex cast components[END_REF][START_REF] Bordas | Enriched Finite Elements and Level Sets for Damage Tolerance Assessment of Complex Structures[END_REF][START_REF] Bordas | An extended finite element library[END_REF][START_REF] Hansbo | A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics[END_REF][START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF][START_REF] Wyart | A substructured FE/XFE method for stress-intensity factors computation in an industrial structure[END_REF][START_REF] Wyart | A substructured FEshell/XFE-3D method for crack analysis in thin walled structures[END_REF][START_REF] Ventura | On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method[END_REF][START_REF] Xiao | Improving the accuracy of Xfem crack tip fields using higher order quadrature and statically admissible stress recovery[END_REF]. In particular, a fictitious domain method can be derived from the principle of Xfem (see [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF][START_REF] Béchet | A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method[END_REF]) and it is possible to adapt some strategies when the asymptotic behavior is unknnown or only partially known (see [START_REF] Chahine | Étude mathématique et numérique de méthodes d' ĺ ḿents finis étendues pour le calcul en domaines fissurés[END_REF][START_REF] Chahine | Spider-xfem, an extended finite element variant for partially unknown crack-tip displacement[END_REF][START_REF] Chahine | A reduced basis enrichment for the extended finite element method[END_REF]).

In the present paper, we improve the results given in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] concerning the variant which uses a cut-off function. We also give some additional error estimates concerning the stress intensity factors and the standard Xfem. The theoretical results are established for both the Lamé system and the Laplace problem. Some numerical tests that illustrate and confirm the theoretical results are presented.

The model problems

The analysis will be performed on a cracked domain Ω ⊂ R 2 for two model problems: The Laplace equation and the Lamé system. The crack Γ C is assumed to be straight. In both cases, the boundary ∂Ω of Ω is partitioned into Γ D , Γ N and Γ C (see Fig. 1). A Dirichlet condition is prescribed on Γ D , a Neumann one on Γ N while on the crack Γ C we consider an homogeneous Neumann condition. The weak formulation of the (scalar) Laplace equation on this domain reads as follows:

               Find u ∈ V such that a(u, v) = l(v) ∀v ∈ V, a(u, v) = Ω ∇u • ∇vdx, l(v) = Ω f vdx + Γ N gv dΓ, V = {v ∈ H 1 (Ω); v = 0 on Γ D }. (1)
While the one of the Lamé (vectorial) system (linear elasticity problem on this domain for an isotropic material) is:

                       Find u ∈ V such that a(u, v) = l(v) ∀v ∈ V, a(u, v) = Ω σ(u) : ε(v) dx, l(v) = Ω f • vdx + Γ N g • v dΓ, σ(u) = λtr(ε(u))I + 2µε(u), V = {v ∈ H 1 (Ω; R 2 ); v = 0 on Γ D }, (2) 
where σ(u) denotes the stress tensor, ε(u) = 1 2 (∇u + ∇u T ) is the linearized strain tensor, f and g are some external load densities on Ω and Γ N respectively, and λ > 0, µ > 0 are the Lamé coefficients.

In both cases, we suppose Ω, f and g smooth enough for the solution u of Problem (1) or (2) to be written as a sum of a singular part u s and a regular part u -u s (see [START_REF] Grisvard | Singularities in boundary value problems[END_REF][START_REF] Grisvard | Problèmes aux limites dans les polygones -Mode d'emploi[END_REF]) satisfying:

u -u s ∈ H 2 (Ω; R d ), (3) 
with d = 1 and u s = K L u L , (4) 
for the solution to the Laplace equation ( 1), and

d = 2 and u s = K I u I + K II u II , (5) 
for the solution to the Lamé system (2). The scalars K L , K I and K II are the so-called stress intensity factors and the functions u L , u I and u II are given in polar coordinates relatively to the crack tip (Fig. 2) by:

u L (r, θ) = √ r sin θ 2 , (6) 
u I (r, θ) = 1 E r 2π (1 + ν) cos θ 2 (δ -cos θ) sin θ 2 (δ -cos θ) , (7) 
u II (r, θ) = 1 E r 2π (1 + ν) sin θ 2 (δ + 2 + cos θ) cos θ 2 (δ -2 + cos θ) , (8) 
where ν = λ λ + 2µ denotes the Poisson ratio, E = 4µ(λ + µ) λ + 2µ the Young modulus and δ = 3 -4ν (plane stress approximation). Note that u L , u I and u II belong to H 3/2-η (Ω) for any η > 0 (see [START_REF] Grisvard | Singularities in boundary value problems[END_REF]) which limits the order of the convergence rate of a classical finite element method to O(h 1/2 ) where h is the mesh parameter. 3 Xfem with a cut-off function

The Xfem variant which uses a cut-off function was proposed in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]. The principle of the standard Xfem (see [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Moës | X-FEM: Nouvelles Frontières Pour les Eléments Finis[END_REF]) is to consider a mesh independent of the crack geometry. An Heaveaside type function is used to represent the discontinuity across the straight crack:

H(x) = +1 if (x -x * ) • n ≥ 0, -1 elsewhere, (9) 
where x * denotes the crack tip and n is a given normal to the crack. Moreover, the nonsmooth functions u L , u I and u II are integrated to the discrete space to take into account the asymptotic behavior at the crack tip. We consider an affine Lagrange finite element method defined on a regular triangulation T h (in the sense of the Ciarlet [START_REF] Ciarlet | The Finite Element Method For Elliptic Problems[END_REF]) of the non-cracked domain Ω, h being the mesh parameter i.e. the largest diameter of the elements of T h . The piecewise P 1 basis functions are denoted ϕ i . In this section, We consider the variant of Xfem proposed in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] for which a whole area around the crack tip is enriched by using a cut-off function denoted χ. The approximation of the Laplace equation reads as

                       Find u h ∈ V h such that a(u h , v h ) = l(v h ) ∀v h ∈ V h , a(u h , v h ) = Ω ∇u h • ∇v h dx, l(v h ) = Ω f v h dx + Γ N gv h dΓ, V h =    v h = i∈I a i ϕ i + i∈I H b i Hϕ i + K L,h χu L ; a i , b i , K L,h ∈ R    . ( 10 
)
where I is the set of node indices of the P 1 finite element method, I H is the sub-set of node indices whose corresponding shape functions have their supports completely cut by the crack (see Fig. 3) and χ is a W 2,∞ (Ω) cut-off function verifying for fixed 0

< r 0 < r 1    χ(r) = 1 if r < r 0 , 0 < χ(r) < 1 if r 0 < r < r 1 , χ(r) = 0 if r 1 < r. (11) 
Note that I H , the set of finite element shape functions enriched by the Heaviside function H, cannot be larger. In particular, it cannot contain the shape functions having the element which contains the crack tip in their support. Otherwise, the geometry of the crack would not be well represented since it is prolongated one element forward. In fact, the representation of the discontinuity across the crack inside the element containing the crack tip is ensured by the nonsmooth functions.

Concerning now the Lamé system, we consider two different ways to incorporate the asymptotic displacement. The first one is directly based on a vectorial enrichment with u I and u II :

                           Find u h ∈ V h such that a(u h , v h ) = l(v h ) ∀v h ∈ V h , a(u h , v h ) = Ω σ(u h ) : ε(v h ) dx, l(v h ) = Ω f • v h dx + Γ N g • v h dΓ, σ(u h ) = λtrε(u h )I + 2µε(u h ), V h =    v h = i∈I a i ϕ i + i∈I H b i Hϕ i + K I,h χu I + K II,h χu II ; a i , b i ∈ R 2 , K I,h , K II,h ∈ R    . (12) 
The second one corresponds to a more classical Xfem approximation with a scalar enrichement of each component:

                           Find u h ∈ V h such that a(u h , v h ) = l(v h ) ∀v h ∈ V h , a(u h , v h ) = Ω σ(u h ) : ε(v h ) dx, l(v h ) = Ω f • v h dx + Γ N g • v h dΓ, σ(u h ) = λtrε(u h )I + 2µε(u h ), V h =    v h = i∈I a i ϕ i + i∈I H b i Hϕ i + 4 j=1 c j F j χ; a i , b i , c j ∈ R 2    , (13) 
where the set of functions {F j (x)} 1≤j≤4 is defined by

{F j (x)} 1≤j≤4 = { √ r sin θ 2 , √ r cos θ 2 , √ r sin θ 2 cos θ, √ r cos θ 2 cos θ }. (14) 
Note that the nonsmooth functions u I and u II can be decomposed on this set of functions.

Optimal Error estimate for the Xfem with a cut-off function

We use the notation a b to signify that there exists a constant C > 0 independent of the mesh parameter of the solution and of the crack-tip position such that a ≤ Cb. For a non negative real number s let H s (D) denote the standard Sobolev space of order s in D of norm (resp. semi-norm) denoted by

• s,D (resp. | • | s,D
), see for instance [START_REF] Adams | Sobolev Spaces[END_REF]. The aim of this section is to establish the following result which is the optimal version of Theorem 1 in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]: Theorem 1 Assume that the displacement field u, solution to Problem (1) (resp. Problem (2)), satisfies Condition (3). Then, the following estimate holds

u -u h 1,Ω h u -χu s 2,Ω , (15) 
where u h is the solution to Problem (10) (resp. to Problem [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] or to Problem ( 13)), u s is the singular part of u (see ( 3)) and χ is the W 2,∞ (Ω) cut-off function introduced before.

The outline of the proof globally follows the one of Theorem 1 in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]. Some sub-optimal intermediary results are here replaced by optimal ones.

We recall the definition of the adapted interpolation operator Π h . The interpolation error estimates are then computed locally over every different type of triangles: triangles totally enriched by the Heaveaside function, triangles partially enriched by the Heaviside function and the triangle containing the crack-tip. The domain Ω is divided into Ω 1 and Ω 2 according to the crack and a straight extension of the crack (Fig. 4) such that the value of H is (-1) k on Ω k , k = 1, 2. Let us denote u r = u -χu s , and u k r the restriction of u r to Ω k , k ∈ {1, 2}. Then, there exists in H 2 (Ω; R d ) an extension u k r of u k r on Ω such that (see [START_REF] Adams | Sobolev Spaces[END_REF])

u 1 r 2,Ω u 1 r 2,Ω 1 , (16) 
u 2 r 2,Ω u 2 r 2,Ω 2 . ( 17 
)
Definition 1 (from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]) Given a displacement field u satisfying (3) and two extensions u 1 r and u 2 r respectively of u 1 r and u 2 r in H 2 (Ω; R d ), we define Π h u as the element of V h such that

Π h u = i∈I a i ϕ i + i∈I H b i Hϕ i + χu s , (18) 
where a i , b i are given as follows (x i denotes the node associated to ϕ i ):

if i ∈ {I \ I H } then a i = u r (x i ), if i ∈ I H and x i ∈ Ω k then (k ∈ {1, 2}, l = k) a i = 1 2 u k r (x i ) + u l r (x i ) , b i = 1 2 u k r (x i ) -u l r (x i ) (-1) k . (19) 
From this definition, the following result holds:

Lemma 1 (from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]) The function Π h u satisfies (i) Π h u = I h u r + χu s over a triangle non-enriched by H, (ii) Π h u| K∩Ω k = I h u k r + χu s over a triangle K totally enriched by H, where I h denotes the classical interpolation operator for the associated finite element method. For K a subset of Ω, we denote

h K = diam(K) = max x 1 ,x 2 ∈K |x 1 -x 2 | and ρ K = {sup(diam(B)); B ball of R 2 , B ⊂ K}.
The following lemma, established in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF], derives simply from the classical interpolation of the extensions of u 1 r and u 2 r .

Lemma 2 (from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]) Let T H h be the set of triangles totally enriched by H (Fig. 3) and

σ K = h K ρ -1
K . For all K in T H h , and for all u satisfying (3) we have the estimates

u -Π h u 1,K∩Ω 1 h K σ K u 1 r 2,K , (20) 
and u -Π h u 1,K∩Ω 2 h K σ K u 2 r 2,K . (21) 
The optimal convergence is of course obtained for non enriched triangles. It remains to treat the partially enriched triangles and the triangle containing the crack tip. We will now detailled the optimal intermediary results which are original in this paper.

Let us start with the Laplace equation and recall that in that case u 1 r and u 2 r satisfy

∂ n u 1 r = ∂ n u 2 r = 0 on Γ C . ( 22 
)
Since the extension ũ1 r and ũ2 r are H 2 (Ω) extension, they also satisfy the Neumann boundary condition on Γ C , namely

∂ n ũ1 r = ∂ n ũ2 r = 0 on Γ C . (23) 
We now give the main technical result.

Lemma 3 Assume that x 1 ∈ Ω 1 is a node belonging to a triangle K containing the crack tip. Then

|u 1 r (x 1 ) -ũ2 r (x 1 )| h K |ũ 1 r -ũ2 r | 2,B(0,h K ) . (24) 
Proof: For shortness write v = ũ1 r -ũ2 r . Using a Taylor expansion, we have

v(x 1 ) = 1 0 (x (1) 1 ∂ 1 v(tx 1 ) + x (2) 1 ∂ 2 v(tx 1 )) dt,
where

x 1 = (x (1) 1 , x (2) 
1 ). Without loss of generality and modulo an orthonormal change of coordinates we assume that the position of the crack tip is (0, 0) and the crack Γ C is a part of (R -, 0). By setting v (1) = ∂ 1 v and v (2) = ∂ 2 v, and making the change of variable s = tx 1 , the above identity is equivalent to

v(x 1 ) = e (n 2 v (1) (s) -n 1 v (2) (s)) ds, ( 25 
)
where e is the edge joining the crack tip and x 1 and n = (n 1 , n 2 ) is (one of) the normal vector to e. Denote by C the truncated sector determined by e and the crack:

C = {(r cos θ, r sin θ) : 0 < r < h 1 θ 0 < θ < π},
when x 1 = (h 1 cos θ 0 , h 1 sin θ 0 ), see Fig. 6. Now setting e 2 = {(h 1 cos θ, h 1 sin θ) : θ 0 < θ < π}, by Green's formula we remark that

C ∂ 1 v (2) dx = ∂C n 1 v (2) ds = e n 1 v (2) ds + e 2 n 1 v (2) ds, because n 1 = 0 on Γ C . Hence e n 1 v (2) ds = C ∂ 1 v (2) dx - e 2 n 1 v (2) ds. ( 26 
)
The first term of this right-hand side will be estimated by a simple Cauchy-Schwarz inequality. For the second term by a scaling argument, we show that

e 2 |v (2) | ds h 1 ∇v (2) B(0,h 1 ) . (27) 
. Indeed by construction v (2) satisfies

Ω 1 Ω 2 C e e 2 D x 1 e 3 ΓC θ = π Γ C θ = -π .
v (2) = 0 on Γ C .
Therefore the change of variable x = h 1 x maps B(0, h 1 ) to the unit ball. By setting v(2) (x) = v (2) (x), we deduce that

e 2 |v (2) | ds ≤ ∂B(0,h 1 )
|v (2) | ds

= h 1 ∂B(0,1) |v (2) | dŝ h 1 B(0,1) |∇v (2) | 2 dx 1 2
.

This last estimate follows from the property

v(2) (x) = 0 on {(x 1 , 0) : -1 < x 1 < 0},
and the compact embedding of H 1 (B(0, 1)) into L 2 (B(0, 1)). Coming back to B(0, h 1 ), we obtain [START_REF] Moës | X-FEM: Nouvelles Frontières Pour les Eléments Finis[END_REF].

Using the estimate ( 27) into [START_REF] Melenk | The partition of unity finite element method: Basic theory and applications[END_REF] and Cauchy-Schwarz inequality, we have shown that

| e n 1 v (2) ds| h 1 ∇v (2) B(0,h 1 ) . ( 28 
)
Let us now pass to the estimate of e n 2 v (1) (s) ds: Denote by D the truncated sector determined by e and the extended crack:

D = {(r cos θ, r sin θ) : 0 < r < h 1 0 < θ < θ 0 },
when we recall that x 1 = (h 1 cos θ 0 , h 1 sin θ 0 ) (see Fig. 6). As before setting e 3 = {(h 1 cos θ, h 1 sin θ) : 0 < θ < θ 0 }, we remark that

D ∂ 2 v (1) dx = ∂D n 2 v (1) ds = e n 2 v (1) ds + e 3 n 2 v (1) ds, because v (1) = 0 on ΓC = {(x 1 , 0) : x 1 > 0}, the extension of the crack Γ C to x 1 > 0. Hence e n 2 v (1) ds = D ∂ 2 v (1) dx - e 3 n 2 v (1) ds. ( 29 
)
It suffices to estimate the second term of this right-hand side. Again using a scaling argument, we show that

e 3 |v (1) | ds h 1 ∇v (1) B(0,h 1 ) . (30) 
Indeed by construction v (1) satisfies v (1) = 0 on ΓC .

Therefore the same scaling arguments as before lead to [START_REF] Renard | An open source generic C++ library for finite element methods[END_REF].

Using the estimate (30) into (29) and Cauchy-Schwarz inequality, we have shown that

| e n 2 v (1) ds| h 1 ∇v (1) B(0,h 1 ) . (31) 
The estimates ( 28) and ( 31) into the identity (25) lead to the estimate (24) because

h 1 ≤ h K .
Let us go on with the Lamé system and recall that in that case u 1 r and u 2 r satisfy

σ(u 1 r ) • n = σ(u 2 r ) • n = 0 on Γ C . (32) 
Since the extension ũ1 r and ũ2 r belong to H 2 (Ω; R 2 ), they also satisfy the traction free boundary condition on Γ C , namely

σ(ũ 1 r ) • n = σ(ũ 2 r ) • n = 0 on Γ C . ( 33 
)
Lemma 4 Assume that x 1 ∈ Ω 1 is a node belonging to a triangle K containing the crack tip. Then the estimate (24) holds.

Proof: The proof starts as before with the identity [START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF]. We notice that by [START_REF] Szabó | Numerical analysis of singularities in two dimensions. II. Computation of generalized flux/stress intensity factors[END_REF] and since n = (0, 1)

⊤ on Γ C , v = ũ1 r -ũ2 r satisfies λ(∂ 1 v 1 + ∂ 2 v 2 ) + µ(∂ 1 v 2 + ∂ 2 v 1 ) = 0 on Γ C , (34) 
(λ + 2µ)∂ 2 v 2 + λ∂ 1 v 1 = 0 on Γ C , (35) 
where v 1 , v 2 are the two components of v, i.e., v = (v 1 , v 2 ) ⊤ . Note that by construction, we also have v = 0 on ΓC and therefore

∂ 1 v 1 = ∂ 1 v 2 = 0 on ΓC . (36) 
Since v (1) still satisfies v (1) = 0 on ΓC , the arguments of the previous lemma show that [START_REF] Stazi | An extended finite element method with higher-order elements for curved cracks[END_REF] is valid.

For the estimate of the term involving v (1) , since n 1 = 0 on Γ C , as before the identity (26) holds. To estimate the second term of the right-hand side of ( 26), we again use a scaling argument: The change of variable x = h 1 x maps B(0, h 1 ) to the unit ball and by setting ŵ(x) = ∇v(x), where

∇v = ∂ 1 v 1 ∂ 2 v 1 ∂ 1 v 2 ∂ 2 v 2 ,
we deduce that

e 2 |v (2) | ds ≤ ∂B(0,h 1 )
|v (2) | ds

≤ ∂B(0,h 1 )
|∇v| ds

≤ h 1 ∂B(0,1)
| ŵ| ds.

Now we notice that the conditions (34), [START_REF] Ventura | On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method[END_REF] and [START_REF] Wyart | A substructured FE/XFE method for stress-intensity factors computation in an industrial structure[END_REF] satisfied by v lead to

λ( ŵ11 + ŵ22 ) + µ( ŵ21 + ŵ12 ) = 0 on {(x 1 , 0) : -1 < x 1 < 0}, (37) 
(λ + 2µ) ŵ22 + λ ŵ11 = 0 on {(x 1 , 0) : -1 < x 1 < 0}, (38) ŵ11 
= ŵ12 = 0 on {(x 1 , 0) : 0 < x 1 < 1}. ( 39 
)
Hence the compact embedding of H 1 (B(0, 1)) into L 2 (B(0, 1)) and a contradiction argument lead to

∂B(0,1)
| ŵ| ds w 1,B(0,1) |w| 1,B(0,1) .

This last estimate holds since otherwise we would find a vector field v ∈ H 1 (B(0, 1)) 2×2 satisfying (37) to [START_REF]On the finite element method[END_REF] such that |w| 1,B(0,1) = 0 and w 0,B(0,1) = 1.

Such a matrix field does not exist because w would be a constant matrix and by [START_REF] Wyart | A substructured FEshell/XFE-3D method for crack analysis in thin walled structures[END_REF] to [START_REF]On the finite element method[END_REF], it would be zero. This estimate leads to [START_REF] Moës | X-FEM: Nouvelles Frontières Pour les Eléments Finis[END_REF] and we conclude as in the previous Lemma.

These lemmas allow to treat the non-optimal cases from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] as follows:

5 Optimal error estimate for the standard Xfem

We give now an a priori error estimate for the standard Xfem with a fixed enrichment area.

In the original method proposed in [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF] the enrichment with the asymptotic displacement at the crack tip is done only on the element containing the crack tip. The rate of convergence of this method is the same than the one without the enrichment (i.e. O( √ h), see [START_REF] Stazi | An extended finite element method with higher-order elements for curved cracks[END_REF][START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF]) since the area of enrichment tends to vanish when the mesh parameter decreases. Of course, this rate of convergence is not difficult to establish. Instead, we prove here an optimal error estimate for the strategy introduced independently in [START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF] and [START_REF] Béchet | Improved implementation and robustness study of the X-FEM for stress analysis around cracks[END_REF] and called "Xfem with a fixed enrichment area" in the first reference and "Xfem with geometrical enrichment" in the second one and consisting in an enrichment area for the asymptotic displacement whose size is independent of the mesh parameter. The approximation of the Laplace equation with this method reads as

                       Find u h ∈ V h such that a(u h , v h ) = l(v h ) ∀v h ∈ V h , a(u h , v h ) = Ω ∇u h .∇v h dx, l(v h ) = Ω f v h dx + Γ N gv h dΓ, V h =    v h = i∈I a i ϕ i + i∈I H b i Hϕ i + i∈I F c i ϕ i F 1 ; a i , b i , c i ∈ R    , (42) 
and the one of the Lamé system is:

                           Find u h ∈ V h such that a(u h , v h ) = l(v h ) ∀v h ∈ V h , a(u h , v h ) = Ω σ(u h ) : ε(v h ) dx, l(v h ) = Ω f.v h dx + Γ N g.v h dΓ, σ(u h ) = λtrε(u h )I + 2µε(u h ), V h =    v h = i∈I a i ϕ i + i∈I H b i Hϕ i + i∈I F 4 j=1 c i,j ϕ i F j ; a i , b i , c i,j ∈ R 2    . ( 43 
)
where I F is the set of finite element nodes which are inside a disk centered on the crack tip and of a fixed radius r 2 independent of the mesh parameter. Let us prove now the optimality of this method.

Theorem 2 Assume that the displacement field u, solution to Problem (1) (resp. Problem (2)) , satisfies Condition (3). Then, the following estimate holds

u -u h 1,Ω h( u -u s 2,Ω + u s 1,Ω + u s 2,Ω\B(x * , r 2 2 ) ), ( 44 
)
where u h is the solution to Problem (42) (resp. to Problem (43)).

Proof: Let χ be a W 2,∞ cut-off function satisfying [START_REF] Chahine | Étude mathématique et numérique de méthodes d' ĺ ḿents finis étendues pour le calcul en domaines fissurés[END_REF] such that r 1 < r 2 and r 0 > r 2 2 . Let χ h = I h χ, be the interpolate of χ on the P 1 finite element method. Using the notation of Section 4, the following interpolation operator

Π h S u = I h u r + χ h u s ,
clearly satisfies Π h S u ∈ V h for V h defined by (42) (resp. by (43)) at least for h sufficiently small since r 1 < r 2 . Then,

Π h u -Π h S u 1,Ω = (χ -χ h )u s 1,Ω ≤ (χ -χ h ) W 1,∞ u s 1,Ω h χ W 2,∞ u s 1,Ω ,
using a classical error estimate on the interpolation of χ with a P 1 finite element method (see for instance [START_REF] Ern | Eléments finis: théorie, applications, mise en oeuvre[END_REF]). Thus, using the estimates established in section 4, one has

u -Π h S u 1,Ω ≤ u -Π h u 1,Ω + Π h u -Π h S u 1,Ω h u -χu s 2,Ω + h u s 1,Ω h( u -u s 2,Ω + 1 -χ W 2,∞ u s 1,Ω + u s 2,Ω\B(x * , r 2 
2 ) ) Which ends the proof thanks to Céa's lemma.

An interpretation of the proof of Theorem 2 is that the standard Xfem performs a better approximation than the Xfem with a cut-off function because the cut-off function used in the proof is arbitrary. As a consequence, the error bound of the standard Xfem is less than the infimum taken on all the W 2,∞ cut-off functions satisfying [START_REF] Chahine | Étude mathématique et numérique de méthodes d' ĺ ḿents finis étendues pour le calcul en domaines fissurés[END_REF]. This is also corroborated with the result on Fig. 8. Nevertheless, the standard Xfem is more expensive than the Xfem with a cut-off function since the number of enrichment degrees of freedom can be greatly higher (see next section).

Numerical experiments

The analysis presented in the two previous sections is corroborated by the numerical tests also presented in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]. We reproduce on Fig. 8 the convergence curves obtained in this paper for the approximation [START_REF] Chahine | Spider-xfem, an extended finite element variant for partially unknown crack-tip displacement[END_REF].

These numerical tests were done on a non-cracked domain defined by Ω = [-0.5; 0.5] × [-0.5; 0.5] and the crack was the line segment Γ C = [-0.5; 0] × {0}. The cut-off function χ ∈ C 2 (Ω) was defined such that

χ(r) = 1 if r < r 0 = 0.01, χ(r) = 0 if r > r 1 = 0.49, (45) 
and χ was identical to a fifth degree polynomial for r 0 ≤ r ≤ r 1 .

Figure 7: The reference solution, a mixed mode (from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]).

The exact solution was a combination of a regular solution to the elasticity problem, the mode I and the mode II analytical solutions and a higher order mode (for the deformed configuration, see Fig. 7 with the Von Mises stress). Fig. 8 shows a comparisons of the convergence curves of the non-enriched classical method, the standard Xfem and the cut-off strategy. The optimal rate is obtained for both the cut-off enrichment and the standard Xfem with a fixed enrichment area. error with respect to the number of cells in each direction (ns) for a mixed mode and different enrichment strategies of a P1 elements (from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]).

Table 6 is also reproduced from [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]. It shows a comparison between the number of the degrees of freedom for different refinements of the classical method, the XFEM with a fixed enrichment area and the cutoff method. In accordance with the theoretical analysis presented in Section 5, the standard Xfem is more accurate but needs more degrees of freedom than the variant with the cut-off function. One might also remark that the choice between the two variants should account for the fact that the stiffness matrix is sparser for the standard Xfem. Fig. 9 and 10 present some new numerical tests on the comparison between strategies ( 12) and (13) (i.e. between a scalar and a vectorial enrichment) for the same experimental situation. The discrete space corresponding to the scalar enrichment ( 13) strictly includes the one for the vectorial enrichment [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]. However, the gain in H 1 (Ω) norm for the error is rather small (Fig. 9). Consequently, the vectorial enrichment appears to be a better choice since the number of additional degrees of freedom is lower and the condition number of the linear system obtained is better (Fig. 10). 12) and ( 13).

Error estimate on the stress intensity factor

In this section, we show an error estimate between the exact stress intensity factors and the approximated ones. Let us start with the Laplace equation. Recall that we write u = u r + K L χu L , and that our Galerkin solution u h ∈ V h solution to [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] admits the splitting

u h = u rh + K L,h χu L ,
where u rh ∈ S h , the space S h being defined by

S h =    v h = i∈I a i ϕ i + i∈I H b i Hϕ i ; a i , b i ∈ R    ,
so that our approximation space V h is spanned by S h plus the singular function χu L . Adapting the arguments from Theorem 9.1 of [START_REF] Bourlard | Error estimates on the coefficients obtained by the singular function method[END_REF] we have the next error estimate:

Theorem 3 Assume that the triangulation is quasi-uniform in the sense that

h h K ∀K ∈ T h . Then we have |K L -K L,h | h 1 2 . ( 46 
)
Proof: As in Theorem 9.1 of [START_REF] Bourlard | Error estimates on the coefficients obtained by the singular function method[END_REF], we have

K L -K L,h = - a((I -G h )u r , (I -G h )(χu L )) a((I -G h )(χu L ), (I -G h )(χu L )) ,
where G h u is the Galerkin approximation of u on S h , namely

G h u ∈ S h is the unique solution of a(G h u, v h ) = a(u, v h ) ∀v h ∈ S h .
By Cauchy-Schwarz's inequality, we deduce that

|K L -K L,h | ≤ (I -G h )u r 1,Ω (I -G h )(χu L ) 1,Ω , (47) 
Since u r belongs to H 2 (Ω) by Theorem 1, we have

(I -G h )u r 1,Ω h|u r | 2,Ω , (48) 
and it remains to estimate from below the denominator of (47). For that purpose, we need to adapt the arguments from Lemma 7.1 of [START_REF] Bourlard | Error estimates on the coefficients obtained by the singular function method[END_REF] because here the triangulation is not aligned with the crack. The main point is to find a small truncated cone C ρ included into the triangle K containing the crack tip with ρ equivalent to h. Let us denote by x i , i = 1, 2, 3 the three nodes of K. First we remark that by a scaling argument we have max i=1,2,3 

|x i | ≥ ρ K √ 2 max i=1,
|x i | h K .
We now fix j ∈ {1, 2, 3} such that

|x j | = max i=1,2,3 |x i | h K .
Let e 1 and e 2 be the two edges of K having x j as vertex and denote by γ ℓ , ℓ = 1, 2, the angle between e ℓ and the segment joining x j to O. Without loss of generality we may assume that γ 1 ≥ γ 2 , and therefore

γ 1 ≥ α 0 2 ,
where α 0 ∈ (0, π 3 ) is the minimal angle of all triangles of T h (equivalent to the regularity of the mesh thanks to Zlamal's result [START_REF]On the finite element method[END_REF]). We now consider the sub-triangle K 1 of K of vertices O, x j , m, where m is the mid-point of the edge e 1 . Denote that α and β the angle of K 1 at O and m respectively (see Fig. 11). Now if 2l is the length of the edge e 1 , by the sinus formula, we notice that

sin α sin β = l |x j | ∼ 1.
This property and the fact that

2α 0 ≤α + β = π -γ 1 ≤ π - α 0 2 ,
leads to the existence of a minimal angle α 1 > 0 (independent of h) such that α > α 1 .

Denoting by ρ the distance from O to m, again by the sinus formula, we have

ρ = sin γ 1 sin α l ∼ h K ,
due to the previous property and the fact that α ≤ α + β ≤ π -α 0 2 . We now denote by θ O the angle of the half-line containing the segment joining O to x j and consider the truncated cone: order of convergence numerically observed for a P 1 finite element method is close to O(h 2 ). However, the advantage of the coefficients K I,h and K II,h of ( 12) is that they are directly given by the approximation without any postprocessing. Moreover, there is no particular difficulty when the crack tip is near a boundary of the domain.

Concluding remarks

In this paper we obtained new advances in the analysis of Xfem methods. First, in contrast with [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] we provide optimal a priori error estimates. We also provide an a priori error estimate on the standard Xfem with fixed enrichment area which shows the optimality of this method. An error estimate on the stress intensity factors computed by the variant with a cut-off function is also established. We prove that the convergence order is O(h 1/2 ) which is confirmed by numerical experiments. This order is rather low compared to the one obtained with the J-integral (see [START_REF] Ph | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF][START_REF] Szabó | Numerical analysis of singularities in two dimensions. II. Computation of generalized flux/stress intensity factors[END_REF][START_REF] Szabó | Superconvergent extraction of flux intensity factors and first derivatives from finite element solutions[END_REF][START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF]). However, it permits to have a first estimate without post-treatment of the solution.

Another interesting perspective is the generalization to 3D cracks where the computation of the stress intensity factors is more complex. However, a variant with an integral matching or a cut-off function could be adapted.
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 1 Figure 1: The cracked domain Ω.
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 2 Figure 2: Polar coordinates respectively to the crack tip Ω.
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 3 Figure 3: Enrichment strategy.
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 4 Figure 4: Domain decomposition.
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 5 Figure 5: (a) Totally enriched triangle and (b) partially enriched triangle (Fig.3).
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 6 Figure 6: The truncated sector C.

  enrichment, slope = -0.49493 XFEM (Enrichment radius = 0.2), slope = -1.0023 Cutoff, slope = -0.956
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 8 Figure8: H 1 error with respect to the number of cells in each direction (ns) for a mixed mode and different enrichment strategies of a P1 elements (from[START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]).
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 1 Figure8: H 1 error with respect to the number of cells in each direction (ns) for a mixed mode and different enrichment strategies of a P1 elements (from[START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF]).

  Cutoff, slope = -0.956 Vectorial enrichment with Cutoff, slope = -0.96151
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 9 Figure 9: H 1 error with respect to the number of cells in each direction (ns). Comparison of strategies (12) and (13).

Figure 10 :

 10 Figure 10: Condition number of the linear system. Comparison of strategies (12) and (13).
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Figure 11 :

 11 Figure 11: Sub-triangle K 1 .

Cω 2 .

 2 ρ = {(r cos θ, r sin θ) : 0 < r < ρ θ O < θ < θ O + α 1 }.By construction, C ρ is included into K, and degenerates only in the radial direction. Indeed, by settingC = {(s cos θ, s sin θ) : 0 < s < 1 0 < θ < α 1 } we can introduce the change of variables F : C → C ρ : (s, ω) → (ρs, θ O + ω).Then for every w h ∈ V h we see thatχu L -w h 1,Ω ≥ u L -w h 1,Cρ |u L • F -w h • F | 1,C .Since w h • F belongs to P 1 (C), we deduce thatχu L -w h 1,Ω |(I -P )(u L • F )| 1,C ,where P is the projection on P 1 (C) with respect to the inner product of H 1 (C)/P 0 (C). Since u L (r, θ) = r With these notations, we have(I -P )(u L • F ) = ρ1 2 (sin θ O 2 (I -P )S D + cos θ O 2 (I -P )S N ),

  

Table 1 :

 1 Number of degrees of freedom

	Number of cells Classical FEM	XFEM	Cutoff enrichment
	in each direction		(enrichment radius =0.2)	
	40	3402	4962	3410
	60	7502	11014	7510
	80	13202	19578	13210

  2,3 |x i -Ô|,where |x i | is the Euclidean norm of x i , Ô is the pull back of the crack tip O by the affine transformation F K that sends the standard reference element K to K.

					Simple calculations
	show that	max i=1,2,3	|x i -Ô| ≥	1 4	,
	and therefore since the triangulation is regular we have
		max i=1,2,3		

Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS

2956, Institut des Sciences et Techniques de Valenciennes, F-59313 -Valenciennes Cedex 9 France, email: Serge.Nicaise@univvalenciennes.fr 2 Corresponding author. Université de Lyon, CNRS INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621, Villeurbanne, France, Yves.Renard@insa-lyon.fr 3 Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute OVGA/14, CH-5232 Villigen PSI, Switzerland, elie.chahine@psi.ch.

Corollary 1 Let K be a triangle partially enriched and let

Proof: It is sufficient to estimate u r -Π h u r 1,K * since the singular part of u -Π h u vanishes. We treat the situation of Fig. 5 (b). Other situations can be treated similarly.

We have Π h u r = u 1 r (x 1 )ϕ 1 + u 2 r (x 2 )ϕ 2 + ũ2 r (x 3 )ϕ 3 on K 2 = K ∩ Ω 2 , or equivalently

By the triangular inequality, we may write

By a standard interpolation error estimate and Lemma 3 (or 4), we conclude that

For the part on

And we conclude as before because ũ1 r -u 2 r satisfies the same conditions than u 1 r -ũ2 r on Γ C and ΓC .

Corollary 2 Let K be the triangle containing the crack tip. Then

Proof: In this case we have

Without loss of generality, we may assume that K has one vertex x 1 in Ω 1 and the two other ones x 2 , x 3 in Ω 2 . In this case on

We then conclude as in the previous Corollary. The estimate on K 2 = K ∩ Ω 2 is treated similarly.

As in [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF], these two Corollaries and Lemma 2 lead to the global error estimate of Theorem 1.

This estimate with (48) in (47) then lead to the conclusion.

It remains to prove (49). For that purpose, we introduce the function

. The main point is that this minimum is now independent of θ O and therefore the estimate (49) is proved, and the Theorem follows.

In the same manner for the Lamé system approximated by [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] we recall that

and that our Galerkin solution u h ∈ V h admits the splitting

As before, we can prove the Theorem 4 Assume that the triangulation is quasi-uniform in the sense that

Then we have

Proof: Following [START_REF] Bourlard | Error estimates on the coefficients obtained by the singular function method[END_REF], we introduce

and denote by G I,h u and G II,h u the Galerkin approximation of u on V h I and V h II respectively. By Theorem 9.1 of [START_REF] Bourlard | Error estimates on the coefficients obtained by the singular function method[END_REF] we know that

.

Therefore by Cauchy-Schwarz's and Korn's inequalities, we have

The remainder of the proof is the same as the one of the previous Theorem. Let us now present some numerical experiments obtained on the Lamé system with the same reference solution as the one on Fig. 7. The implementation of the discrete problem [START_REF] Chahine | Crack-tip enrichment in the Xfem method using a cut-off function[END_REF] uses Getfem++, the freely available C++ finite element library developed by our team (see [START_REF] Renard | An open source generic C++ library for finite element methods[END_REF]). The two stress intensity factors have the same value. The approximation of the stress intensity factor given by K I,h and K II,h in ( 12) is presented on Fig. 12. Different values of the radiuses r 0 and r 1 corresponding to the definition of the cut-off function [START_REF] Chahine | Étude mathématique et numérique de méthodes d' ĺ ḿents finis étendues pour le calcul en domaines fissurés[END_REF] are tested in order to show the crucial influence of the shape of the cut-off function. The optimal rate of convergence is reached in the two cases (r 0 , r 1 ) = (0.01, 0.4) and (r 0 , r 1 ) = (0.01, 0.2). The sharper is the cut-off function, the worst is the approximation of the stress intensity factors. In the case (r 0 , r 1 ) = (0.2, 0.4), the optimal rate of convergence is not reached in the range of values of h studied. This important sensitivity to the shape of the cut-off function suggests to investigate in the future the variant with a pointwise matching [START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF] or an integral matching [START_REF] Chahine | A non-conformal eXtended Finite Element approach: Integral matching XFEM[END_REF][START_REF] Chahine | Étude mathématique et numérique de méthodes d' ĺ ḿents finis étendues pour le calcul en domaines fissurés[END_REF] which avoid the use of a cut-off function.

The convergence rate obtained is lower than the one obtained by J-integral and interaction integral (see [START_REF] Ph | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF][START_REF] Moës | A finite element method for crack growth without remeshing[END_REF] for the principle and [START_REF] Szabó | Numerical analysis of singularities in two dimensions. II. Computation of generalized flux/stress intensity factors[END_REF][START_REF] Szabó | Superconvergent extraction of flux intensity factors and first derivatives from finite element solutions[END_REF][START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF] for some numerical tests). Such methods require a postprocessing but are superconvergent, for instance in [START_REF] Laborde | High Order Extended Finite Element Method For Cracked Domains[END_REF] the