A memory gradient algorithm for l2-l0 regularization with applications to image restoration
Résumé
In this paper, we consider a class of differentiable criteria for sparse image recovery problems. The regularization is applied to a linear transform of the target image. As special cases, it includes edge preserving measures or frame analysis potentials. As shown by our asymptotic results, the considered l2-l0 penalties may be employed to approximate solutions to l0 penalized optimization problems. One of the advantages of the approach is that it allows us to derive an efficient Majorize-Minimize Memory Gradient algorithm. The fast convergence properties of the proposed optimization algorithm are illustrated through image restoration examples.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...