Combined model of human skin - heat transfer in the vein and tissue: experimental and numerical study
Résumé
The aim of this study is to propose a combined model of heat transfer in the vein and tissue of human skin. It allows to better understand the thermomechanical behavior of the skin and its direct environment when exposed to strong thermal variations. The work is based on experimental and numerical investigations. The first experimental step consists in placing a cooled cylindrical steel bar on the skin of a human forearm and measuring the temperature change using an infrared camera. Blood circulation in the veins was seen to clearly influence heat diffusion. The second experimental step consists in measuring geometrical properties of the veins and blood velocity using an echo-Doppler probe. These experimental measurements provide a numerical model of the skin and its direct vicinity. The three-dimensional multilayer model uses Pennes equation to model biological tissue and the convective heat transport equation, to model blood. The properties of the biological materials obtained from the literature are validated by our experimentation. The numerical model is able to simulate the experimental observations, but also to estimate blood temperature and velocity in the veins.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...