Quantitative ergodicity for some switched dynamical systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Quantitative ergodicity for some switched dynamical systems

Résumé

We provide quantitative bounds for the long time behavior of a class of Piecewise Deterministic Markov Processes with state space Rd × E where E is a finite set. The continuous component evolves according to a smooth vector field that switches at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Under regularity assumptions on the jump rates and stability conditions for the vector fields we provide explicit exponential upper bounds for the convergence to equilibrium in terms of Wasserstein distances. As an example, we obtain convergence results for a stochastic version of the Morris-Lecar model of neurobiology..
Fichier principal
Vignette du fichier
quantitatif.pdf (239.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00686272 , version 1 (09-04-2012)
hal-00686272 , version 2 (16-09-2012)
hal-00686272 , version 3 (19-09-2012)
hal-00686272 , version 4 (05-12-2012)

Identifiants

Citer

Michel Benaïm, Stéphane Le Borgne, Florent Malrieu, Pierre-André Zitt. Quantitative ergodicity for some switched dynamical systems. 2012. ⟨hal-00686272v3⟩
310 Consultations
229 Téléchargements

Altmetric

Partager

More