Non-classical nucleation model for cold production of heavy oil - Archive ouverte HAL
Article Dans Une Revue Journal of Canadian Petroleum Technology (JCPT) Année : 2009

Non-classical nucleation model for cold production of heavy oil

Résumé

We examine the gas bubble nucleation phenomenon encountered in extra heavy oil during cold production. The nucleation model described in this work is based on so-called non-classical nucleation. Using this method, we show mesoporous cavities could be at the origin of the nanobubble trapping mechanism. The results obtained show this physical approach tends to demonstrate the pre-existence of gas bubbles in these crevices (surface roughness).The physics of capillarity used here is based on traditional Laplace's law and an original disjoining pressure expression. We test for several wettabilities in our mathematical model. The first configuration envisaged is for oil-wet rocks, although the cavity is assumed to be gas-wet. Water wettability is considered a second time, taking into account a precursor water film between the rock and the entrapped bubbles. The mix of these two configurations could represent nucleation in a global mixed-wet porous media. However, we show in the first part of this article that water presence does not affect the initial bubble radius. Nevertheless, a bubble growth model developed in the second configuration shows that bubble confinement could play an important role on gas bubble nucleation and the early first steps of its development.
Fichier non déposé

Dates et versions

hal-00682504 , version 1 (26-03-2012)

Identifiants

  • HAL Id : hal-00682504 , version 1

Citer

Vincent Meyer, Patrice Creux, Alain Graciaa, E. Franco, F. Luck. Non-classical nucleation model for cold production of heavy oil. Journal of Canadian Petroleum Technology (JCPT), 2009, 48 (4), pp.49-56. ⟨hal-00682504⟩

Collections

CNRS UNIV-PAU LFCR
34 Consultations
0 Téléchargements

Partager

More