Optimal observation of the one-dimensional wave equation - Archive ouverte HAL
Article Dans Une Revue Journal of Fourier Analysis and Applications Année : 2013

Optimal observation of the one-dimensional wave equation

Emmanuel Trélat
Enrique Zuazua

Résumé

In this paper, we consider the homogeneous one-dimensional wave equation on $[0,\pi]$ with Dirichlet boundary conditions, and observe its solutions on a subset $\omega$ of $[0,\pi]$. Let $L\in(0,1)$. We investigate the problem of maximizing the observability constant, or its asymptotic average in time, over all possible subsets $\omega$ of $[0,\pi]$ of Lebesgue measure $L\pi$. We solve this problem by means of Fourier series considerations, give the precise optimal value and prove that there does not exist any optimal set except for $L = 1/2$. When $L \neq 1/2$ we prove the existence of solutions of a convexified minimization problem, proving a no gap result. We then provide and solve a modal approximation of this problem, show the oscillatory character of the optimal sets, the so called spillover phenomenon, which explains the lack of existence of classical solutions for the original problem.
Fichier principal
Vignette du fichier
optimobswave.pdf (335.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00679577 , version 1 (15-03-2012)

Identifiants

Citer

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Optimal observation of the one-dimensional wave equation. Journal of Fourier Analysis and Applications, 2013, 19 (3), pp.514-544. ⟨10.1007/s00041-013-9267-4⟩. ⟨hal-00679577⟩
460 Consultations
408 Téléchargements

Altmetric

Partager

More