Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging. - Archive ouverte HAL
Article Dans Une Revue Chemistry - A European Journal Année : 2012

Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging.

Susana Torres
  • Fonction : Auteur
Renato Rosseto
  • Fonction : Auteur
Jan Kotek
  • Fonction : Auteur
Éva Tóth

Résumé

Enzyme-responsive MRI-contrast agents containing a "self-immolative" benzylcarbamate moiety that links the MRI-reporter lanthanide complex to a specific enzyme substrate have been developed. The enzymatic cleavage initiates an electronic cascade reaction that leads to a structural change in the Ln(III) complex, with a concomitant response in its MRI-contrast-enhancing properties. We synthesized and investigated a series of Gd(3+) and Yb(3+) complexes, including those bearing a self-immolative arm and a sugar unit as selective substrates for β-galactosidase; we synthesized complex LnL(1), its NH(2) amine derivatives formed after enzymatic cleavage, LnL(2), and two model compounds, LnL(3) and LnL(4). All of the Gd(3+) complexes synthesized have a single inner-sphere water molecule. The relaxivity change upon enzymatic cleavage is limited (3.68 vs. 3.15 mM(-1) s(-1) for complexes GdL(1) and GdL(2), respectively; 37 °C, 60 MHz), which prevents application of this system as an enzyme-responsive T(1) relaxation agent. Variable-temperature (17)O NMR spectroscopy and (1)H NMRD (nuclear magnetic relaxation dispersion) analysis were used to assess the parameters that determine proton relaxivity for the Gd(3+) complexes, including the water-exchange rate (k(ex)(298), varies in the range 1.5-3.9×10(6) s(-1)). Following the enzymatic reaction, the chelates contain an exocyclic amine that is not protonated at physiological pH, as deduced from pH-potentiometric measurements (log K(H)=5.12(±0.01) and 5.99(±0.01) for GdL(2) and GdL(3), respectively). The Yb(3+) analogues show a PARACEST effect after enzymatic cleavage that can be exploited for the specific detection of enzymatic activity. The proton-exchange rates were determined at various pH values for the amine derivatives by using the dependency of the CEST effect on concentration, saturation time, and saturation power. A concentration-independent analysis of the saturation-power-dependency data was also applied. All these different methods showed that the exchange rate of the amine protons of the Yb(III) complexes decreases with increasing pH value (for YbL(3), k(ex)=1300 s(-1) at pH 8.4 vs. 6000 s(-1) at pH 6.4), thereby resulting in a diminution of the observed CEST effect.

Domaines

Chimie organique

Dates et versions

hal-00679094 , version 1 (14-03-2012)

Identifiants

Citer

Thomas Chauvin, Susana Torres, Renato Rosseto, Jan Kotek, Bernard Badet, et al.. Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging.. Chemistry - A European Journal, 2012, 18 (5), pp.1408-18. ⟨10.1002/chem.201101779⟩. ⟨hal-00679094⟩
110 Consultations
0 Téléchargements

Altmetric

Partager

More