Eigenvarieties for classical groups and complex conjugations in Galois representations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Eigenvarieties for classical groups and complex conjugations in Galois representations

Résumé

The goal of this paper is to remove the irreducibility hypothesis in a theorem of Richard Taylor describing the image of complex conjugations by $p$-adic Galois representations associated with regular, algebraic, essentially self-dual, cuspidal automorphic representations of $\GL_{2n+1}$ over a totally real number field $F$. We also extend it to the case of representations of $\GL_{2n}/F$ whose multiplicative character is ''odd''. We use a $p$-adic deformation argument, more precisely we prove that on the eigenvarieties for symplectic and even orthogonal groups, there are ''many'' points corresponding to (quasi-)irreducible Galois representations. The recent work of James Arthur describing the automorphic spectrum for these groups is used to define these Galois representations, and also to transfer self-dual automorphic representations of the general linear group to these classical groups.
Fichier principal
Vignette du fichier
deform.pdf (445.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00675682 , version 1 (01-03-2012)

Identifiants

Citer

Olivier Taïbi. Eigenvarieties for classical groups and complex conjugations in Galois representations. 2012. ⟨hal-00675682⟩
579 Consultations
249 Téléchargements

Altmetric

Partager

More