Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution - Archive ouverte HAL
Article Dans Une Revue Journal of the Optical Society of America. A Optics, Image Science, and Vision Année : 2010

Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution

Résumé

This paper tackles the problem of image deconvolution with joint estimation of point spread function (PSF) parameters and hyperparameters. Within a Bayesian framework, the solution is inferred via a global a posteriori law for unknown parameters and object. The estimate is chosen as the posterior mean, numerically calculated by means of a Monte Carlo Markov chain algorithm. The estimates are efficiently computed in the Fourier domain, and the effectiveness of the method is shown on simulated examples. Results show precise estimates for PSF parameters and hyperparameters as well as precise image estimates including restoration of high frequencies and spatial details, within a global and coherent approach.
Fichier principal
Vignette du fichier
orieux.pdf (887.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00674508 , version 1 (08-03-2012)

Identifiants

Citer

François Orieux, Jean-François Giovannelli, Thomas Rodet. Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution. Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2010, pp.1593. ⟨10.1364/JOSAA.27.001593⟩. ⟨hal-00674508⟩
714 Consultations
812 Téléchargements

Altmetric

Partager

More