Asympotic behavior of the total length of external branches for Beta-coalescents - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Asympotic behavior of the total length of external branches for Beta-coalescents

Résumé

We consider a ${\Lambda}$-coalescent and we study the asymptotic behavior of the total length $L^{(n)}_{ext}$ of the external branches of the associated $n$-coalescent. For Kingman coalescent, i.e. ${\Lambda}={\delta}_0$, the result is well known and is useful, together with the total length $L^{(n)}$, for Fu and Li's test of neutrality of mutations% under the infinite sites model asumption . For a large family of measures ${\Lambda}$, including Beta$(2-{\alpha},{\alpha})$ with $0<\alpha<1$, M{ö}hle has proved asymptotics of $L^{(n)}_{ext}$. Here we consider the case when the measure ${\Lambda}$ is Beta$(2-{\alpha},{\alpha})$, with $1<\alpha<2$. We prove that $n^{{\alpha}-2}L^{(n)}_{ext}$ converges in $L^2$ to $\alpha(\alpha-1)\Gamma(\alpha)$. As a consequence, we get that $L^{(n)}_{ext}/L^{(n)}$ converges in probability to $2-\alpha$. To prove the asymptotics of $L^{(n)}_{ext}$, we use a recursive construction of the $n$-coalescent by adding individuals one by one. Asymptotics of the distribution of $d$ normalized external branch lengths and a related moment result are also given.
Fichier principal
Vignette du fichier
total_ext_length_beta_submited_hal_120227.pdf (230.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00674190 , version 1 (27-02-2012)
hal-00674190 , version 2 (21-12-2012)
hal-00674190 , version 3 (23-05-2013)

Identifiants

Citer

Jean-Stephane Dhersin, Linglong Yuan. Asympotic behavior of the total length of external branches for Beta-coalescents. 2012. ⟨hal-00674190v1⟩
348 Consultations
149 Téléchargements

Altmetric

Partager

More