A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2013

A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces

Résumé

We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a locally finite measure. We prove that this space with the extended Gromov-Hausdorff-Prokhorov metric is a Polish space. This generalization is needed to define Lévy trees, which are (possibly unbounded) random real trees endowed with a locally finite measure.
Fichier principal
Vignette du fichier
Topology.pdf (244.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00673921 , version 1 (24-02-2012)

Licence

Identifiants

Citer

Romain Abraham, Jean-François Delmas, Patrick Hoscheit. A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces. Electronic Journal of Probability, 2013, 18, pp.14. ⟨10.1214/EJP.v18-2116⟩. ⟨hal-00673921⟩
234 Consultations
664 Téléchargements

Altmetric

Partager

More