Finitude géométrique en géométrie de Hilbert - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Fourier Year : 2014

Finitude géométrique en géométrie de Hilbert


We study the notion of geometrical finiteness for those Hilbert geometries defined by strictly convex sets with $\mathcal{C}^1$ boundary. In Gromov-hyperbolic spaces, geometrical finiteness is defined by a property of the group action on the boundary of the space. We show by constructing an explicit counter-example that this definition has to be strenghtened in order to get equivalent characterizations in terms of the geometry of the quotient orbifold, similar to those obtained by Brian Bowditch in hyperbolic geometry.
Fichier principal
Vignette du fichier
Geo_fini3.0.pdf (1.76 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00673118 , version 1 (22-02-2012)
hal-00673118 , version 2 (24-02-2012)
hal-00673118 , version 3 (02-10-2013)



Mickaël Crampon, Ludovic Marquis. Finitude géométrique en géométrie de Hilbert. Annales de l'Institut Fourier, 2014, 64 (6), pp.2299-2377. ⟨10.5802/aif.2914⟩. ⟨hal-00673118v3⟩
439 View
244 Download



Gmail Facebook X LinkedIn More