Nonlinear Convection in Reaction-diffusion Equations under dynamical boundary conditions - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2012

Nonlinear Convection in Reaction-diffusion Equations under dynamical boundary conditions

Abstract

We investigate blow-up phenomena for positive solutions of nonlinear reaction-diffusion equations including a nonlinear convection term $\partial_t u = \Delta u - g(u) \cdot \nabla u + f(u)$ in a bounded domain of $\mathbb{R}^N$ under the dissipative dynamical boundary conditions $\sigma \partial_t u + \partial_\nu u =0$. Some conditions on $g$ and $f$ are discussed to state if the positive solutions blow up in finite time or not. Moreover, for certain classes of nonlinearities, an upper-bound for the blow-up time can be derived and the blow-up rate can be determinated.
Fichier principal
Vignette du fichier
Mailly-Rault_EJDE.pdf (161.71 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00668330 , version 1 (10-02-2012)
hal-00668330 , version 2 (25-09-2012)

Identifiers

Cite

Gaëlle Pincet Mailly, Jean-François Rault. Nonlinear Convection in Reaction-diffusion Equations under dynamical boundary conditions. 2012. ⟨hal-00668330v2⟩
176 View
93 Download

Altmetric

Share

Gmail Facebook X LinkedIn More