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We investigate blow-up phenomena for positive solutions of nonlinear reactiondiffusion equations including a nonlinear convection term ∂ t u = ∆u -g(u) • ∇u+f (u) in a bounded domain of R N under the dissipative dynamical boundary conditions σ∂ t u + ∂ ν u = 0. Some conditions on g and f are discussed to state if the positive solutions blow up in finite time or not. Moreover, for certain classes of nonlinearities, an upper-bound for the blow-up time can be derived and the blow-up rate can be determinated.

Introduction

We consider the following nonlinear parabolic problem

   ∂ t u = ∆u -g(u) • ∇u + f (u) in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = u 0 ≥ 0 in Ω, (1.1) 
where g : R → R N , f : R → R, Ω is a bounded domain of R N with C 2boundary ∂Ω. We denote by ν : ∂Ω → R N the outer unit normal vector field, and by ∂ ν the outer normal derivative. These equations arise in different areas, especially in population growth, chemical reactions and heat conduction. For instance, in the case of a heat transfer in a medium Ω, the first equation ∂ t u = ∆u -g(u) • ∇u + f (u) is a heat equation including a nonlinear convection term g(u) • ∇u and a nonlinear source f . On the boundary ∂Ω, if σ is positive, the dynamical boundary conditions describe the fact that a heat wave with the propagation speed 1 σ is sent into the region into an infinitesimal layer near the boundary due to the heat flux across the boundary (see [START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF] and [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF]).

There are various results in the literature about the theory of blow-up for semilinear parabolic equations, in particular for reaction-diffusion equations, see e.g. [START_REF] Fila | Dirichlet boundary conditions can prevent blow-up reaction-diffusion equations and systems[END_REF], [START_REF] Friedman | Blow up of solutions of nonlinear parabolic equations[END_REF], [START_REF] Friedman | Blow up of positive solutions of semilinear heat equations[END_REF], and [START_REF] Kaplan | On the growth of solutions of quasi-linear parabolic equations[END_REF]. In this work, we discuss a problem involving a nonlinear convection term. Whereas a Burgers' equation has been studied in [START_REF] Below | Growth order and blow up points for the parabolic burgers' equation under dynamical boundary conditions[END_REF] in the one-dimensional case, we now consider a more general convection term and we set in a regular domain of R N . After recalling some qualitative properties in Section 2, we construct a global upper-solution for Problem (1.1) in Section 3 and we deduce some conditions on f and g guaranteeing global existence of the solutions (Theorem 3.2). In Section 4, we investigate two methods to ensure the blow-up of solutions of Problem (1.1). The first one is an eigenfunction method valid for the model problem

   ∂ t u = ∆u -g(u) • ∇u + u p in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = u 0 in Ω, (1.2) 
with p > 1 (Theorem 4.2). We also derive some upper bounds for the blow-up time. The second method, devoted to the following problem

   ∂ t u = ∆u -g(u) • ∇u + e pu in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = u 0 in Ω, (1.3) 
with p > 0, requires a self-similar lower-solution which blows up in finite time (Theorem 4.3). We prove the blow-up of solutions of Finally, in Section 5, we determine the blow-up rate of the solutions of Problem (1.2) in the L ∞ -norm when approaching the blow-up time (Theorem 5.2). Throughout, we shall assume the dissipativity condition

σ ≥ 0 on ∂Ω × (0, ∞). (1.4)
In order to deal with classical solutions, we always assume that the parameters in the equations of Problem (1.1) are smooth

σ ∈ C 1 b (∂Ω × (0, ∞)), (1.5) 
f ∈ C 1 (R) , f (s) > 0 for s > 0, (1.6) 
and

g ∈ C 1 (R, R N ). (1.7)
The initial data is continuous, non-trivial and non-negative in Ω

u 0 ∈ C(Ω), u 0 ≡ 0, u 0 ≥ 0. (1.8)
Let T = T (σ, u 0 ) denote the maximal existence time of the unique maximal classical solution of Problem (1.1)

u σ ∈ C(Ω × [0, T )) ∩ C 2,1 (Ω × (0, T ))
with the coefficient σ in the boundary conditions and the initial data u 0 . As for the well-posedness and the local existence of the solutions of Problem (1.1), we refer to [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], [START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF] and [START_REF] Escher | Quasilinear parabolic systems with dynamical boundary conditions[END_REF]. ¿From [START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF], since the convection term depends linearly on the gradius ∇u of the solution, the maximal existence time T is the blow-up time of the solution with respect to the L ∞ -norm:

T = inf s > 0 lim tրs sup Ω |u(x, t)| = ∞ .

Qualitative properties

The aim of this section is to compare the solutions for different parameters σ and initial data u 0 and to summarize some positivity results on the classical solutions of Problem (1.1). Using the maximum principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], we extend some results obtained in [START_REF] Below | Blow Up for Reaction Diffusion Equations Under Dynamical Boundary Conditions[END_REF] in the case of reaction-diffusion to our problem with convection.

Theorem 2.1. Assume hypotheses (1.4) -(2.2). Suppose that σ does not depend on time σ ∈ C 1 (∂Ω).

(2.1)

Then the solution u of Problem (1.1) satisfies

u > 0 in Ω × (0, T (σ, u 0 )), ∂ t u ≥ 0 in Ω × [0, T (σ, u 0 )), ∂ t u > 0 in Ω × (0, T (σ, u 0 )).
Moreover, for all ξ ∈ (0, T (σ, u 0 )), there exists d > 0 such that

∂ t u > d in Ω × [ξ, T (σ, u 0 )).
Proof. Let τ ∈ (0, T (σ, u 0 )). Since u is C 2,1 (Ω × [0, τ ]) and because f and g are smooth ((1.6) and (1.7)), we can define these constants

C = sup Ω×[0,τ ]
g(u) and M = sup

Ω×[0,τ ] g ′ (u) • ∇u -f ′ (u).
First, the positivity principle (Corollary 2.4 from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF]) applied to Problem

(1.1) implies u ≥ 0 in Ω × [0, τ ] since f ≥ 0 by condition (1.6). Thus we obtain    ∂ t u ≥ ∆u -g(u) • ∇u ≥ ∆u -C|∇u| in Ω for t > 0, σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = u 0 in Ω.
The strong maximum principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] implies Then, since the coefficients in the equations of Problem (1.1) are sufficiently smooth, classical regularity results in [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF] imply that u ∈ C 2,2 (Ω × [0, τ ]). Thus y = ∂ t u ∈ C 2,1 (Ω × [0, τ ]) and satisfies

m := min Ω×[0,τ ] u = min Ω u 0 , and if this minimum m is attained in Ω × (0, τ ], u ≡ m in Ω × [0, τ ]. Since f > 0 in (0, ∞),
∂ t y = ∆y -g(u) • ∇y -(g ′ (u) • ∇u)y + f ′ (u)y in Ω for t > 0, σ∂ t y + ∂ ν y = 0 on ∂Ω for t > 0.
By continuity, condition (2.2) implies y(•, 0) ≥ 0 in Ω. Again, Corollary 2.4 from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] implies y ≥ 0 in Ω × [0, τ ]. In order to apply properly the strong maximum principle, we have to introduce w = ye M t ≥ 0. By definition of C and M, we obtain

∂ t w ≥ ∆w -g(u) • ∇w ≥ ∆w -C|∇w| in Ω for t > 0, σ∂ t w + ∂ ν w ≥ 0 on ∂Ω for t > 0.
Again, the strong maximum principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] implies m := min

Ω×[0,τ ] w = min Ω w(•, 0) , and if this minimum m is attained in Ω × (0, τ ], w ≡ m in Ω × [0, τ ]. In particular, if m = 0, we have ∂ t u ≡ 0 in Ω × [0, τ ], thus u(•, t) = u 0 for all t ∈ [0, τ ].
Hence u attains its minimum in Ω × (0, τ ], which is impossible according to the first part of the proof. Thus w and ∂ t u are positive in Ω × (0, τ ]. Finally, let ξ ∈ (0, τ ). Because y is continuous and thanks to the previous point, there exists d > 0 such that y(•, ξ) > d in Ω. As y satisfies

∂ t y = ∆y -g(u) • ∇y -g ′ (u) • ∇u + f ′ (u) y in Ω × [ξ, τ ], σ∂ t y + ∂ ν y = 0 on ∂Ω × [ξ, τ ],
the weak maximum principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] implies min

Ω×[ξ,τ ] y = min Ω y(•, ξ) . Hence y > d in Ω × [ξ, τ ].
Note that d depends only on ξ, not on τ . Without this step, we only have y ≥ me -M τ which may vanish as τ → T (σ, u 0 ).

Let 0 ≤ σ 1 ≤ σ 2 be two coefficients satisfying condition (1.5), v 0 ≤ u 0 be two initial data fulfilling hypothesis (1.8) and w 0 a function in C 0 (Ω) with 0 ≤ w 0 ≤ v 0 . Denote by u σ 1 , u σ 2 , v and w the maximal solutions of the following problems

   ∂ t u σ 1 = ∆u σ 1 -g(u σ 1 ) • ∇u σ 1 + f (u σ 1 ) in Ω for t > 0, σ 1 ∂ t u σ 1 + ∂ ν u σ 1 = 0 on ∂Ω for t > 0, u σ 1 (•, 0) = u 0 in Ω,    ∂ t u σ 2 = ∆u σ 2 -g(u σ 2 ) • ∇u σ 2 + f (u σ 2 ) in Ω for t > 0, σ 2 ∂ t u σ 2 + ∂ ν u σ 2 = 0 on ∂Ω for t > 0, u σ 2 (•, 0) = u 0 in Ω,    ∂ t v = ∆v -g(v) • ∇v + f (v) in Ω for t > 0, σ 2 ∂ t v + ∂ ν v = 0 on ∂Ω for t > 0, v(•, 0) = v 0 in Ω, and    ∂ t w = ∆w -g(w) • ∇w + f (w) in Ω for t > 0, w = 0 on ∂Ω for t > 0, w(•, 0) = w 0 in Ω.
Let T (σ 1 , u 0 ), T (σ 2 , u 0 ), T (σ 2 , v 0 ) and T (w 0 ) be their respective maximal existence times. For the reader convenience, we recall some results stemming from the comparison principle [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF]. [START_REF] Below | Blow Up for some non linear parabolic problems with convection under dynamical boundary conditions[END_REF]). Under the aforementioned hypotheses, we have

Theorem 2.2 ([
T (σ 2 , u 0 ) ≤ T (σ 2 , v 0 ) ≤ T (w 0 ) and 0 ≤ w ≤ v ≤ u σ 2 in Ω × [0, T (σ 2 , u 0 )) .
In addition, if

u 0 ∈ C 2 (Ω) with ∆u 0 -g(u 0 ) • ∇u 0 + f (u 0 ) ≥ 0 in Ω, (2.2) 
we have

T (σ 1 , u 0 ) ≤ T (σ 2 , u 0 ) and u σ 2 ≤ u σ 1 in Ω × [0, T (σ 1 , u 0 )) .
An important fact comes from the last statement of Theorem 2.1. For any positive solution u of Problem (1.1), the maximum principle implies that for any s ∈ (0, T (σ, u 0 )), there exists c > 0 such that u(•, s) ≥ c in Ω. Then, consider the solution ũ of (1.1) with the constant initial data c and σ = sup σ in the boundary conditions. Theorem 2.2 implies ũ ≤ u. Since c satisfies equation (2.2), Theorem 2.1 leads to ∂ t ũ > d > 0. Thus, ũ can be big enough after a long time (maybe it blows up). So does u, even if u 0 does not satisfy condition (2.2).

Global existence

In this section, we give some conditions on the function g in the convection term, which ensure global existence of the solutions of Problem (1.1) for various reaction terms f . We use the comparison method from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF]. Thus, we just need to find an appropriate upper-solution of Problem (1.1) which does not blow up. This is our first lemma. Lemma 3.1. Let α > 0 and K > 0 be two real numbers and let

η ∈ C 1 ([0, ∞)) with η ′ ≥ α 2 . For any integer 1 ≤ j ≤ N, the function U defined in Ω×[0, ∞) by U(x, t) = K exp αx j + η(t) , satisfies    ∂ t U ≥ ∆U -g(U) • ∇U + f (U) in Ω for t > 0, σ∂ t U + ∂ ν U ≥ 0 on ∂Ω for t > 0, U(•, 0) > 0 in Ω, if αg j (ω) ≥ f (ω) ω for all ω ≥ 0 (3.1)
and if σ(x, t) ≥ α η ′ (t)
for all t > 0.

(3.2)

Proof. A simple computation of the derivatives of U leads us to

∂ t U -∆U + g(U) • ∇U = η ′ -α 2 U + αg j (U)U in Ω for t > 0.
Since we assume η ′ ≥ α 2 , hypothesis (3.1) implies

∂ t U -∆U + g(U) • ∇U -f (U) ≥ 0 in Ω × (0, ∞).
Furthermore, on the boundary ∂Ω, for t > 0, we have

σ∂ t U + ∂ ν U = ση ′ (t) + αν j (x) U (3.3) ≥ ση ′ (t) -α U ≥ 0,
by hypothesis (3.2) since ν is normalized, and clearly U(x, 0) = K exp αx j + η(0) > 0 in Ω.

Remark 3.1. In the case of the Dirichlet boundary conditions, we can use this upper-solution with the special choice η ≡ 0 (see [START_REF] Quittner | Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States[END_REF]). But for the dynamical boundary conditions, we must use a positive time-dependent η because our solutions are not bounded, see Theorem 2.1.

Now we can state the following theorems for a nonlinear reaction term f growing as a power of u (Problem (1.2)), or as an exponential function (Problem (1.3)).

Theorem 3.2. Let σ be a coefficient fulfilling conditions (1.4), (1.5) and such that there exists δ > 0 with

inf ∂Ω σ ≥ δ sup ∂Ω σ for t > 0 and sup x∈∂Ω σ(x, •) -1 ∈ L 1 loc (R + ).
Assume u 0 satisfies condition (1.8). If there exists an integer 1 ≤ j ≤ N such that

lim inf ω→∞ g j (ω) ω p-1 > 0, (3.4) 
then the solution of Problem (1.2) is a global solution.

Proof. In view of Theorem 2.1 and (3.4), we can suppose that u 0 is sufficiently big such that there exists C > 0 with

g j (u) ≥ Cu p-1 in Ω for t > 0.
For This theorem holds in particular for a nonlinearity g in the form g(u) = (α 1 u q 1 , . . . , α i u q i , . . . , α N u q N ) with at least one integer j such that α j > 0 and q j ≥ p -1. A similar result can be derived for Problem (1.3):

η(t) = Cδ -1 t 0 sup x∈∂Ω σ(x, s) -1 ds+C 2 t,
Theorem 3.3. Under the aforementioned assumptions, the solution of Problem (1.3) is a global solution if the convection term g(u) • ∇u has (at least) one component g j satisfying g j (u) = α j e q j u with α j > 0 and q j > p.

Proof. Thanks to q j > p, condition (3.1) is fulfilled because α j e q j u ≥ α j e pu /u for u sufficiently big.

Remark 3.2. Condition (3.4) is optimal for Problem (1.2), see Theorems 3.2 and 4.2. But it can be improved in some special cases, for example, if the reaction term is f (u) = u ln u. Lemma 3.1 implies that all solutions of Problem (1.1) are global if one component g j of g satisfies g j (u) ≥ α j ln u.

In fact, in that case, every positive solution of (1.1) is global, without any assumption on the convection term g, since Proof. Let u be a non-trivial positive solution of

   ∂ t u = ∆u -g(u) • ∇u + f (u) in Ω for t > 0, ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = u 0 in Ω. (3.6)
Using the maximum principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], we have u(•, ξ) > 0 in Ω for ξ > 0.

Hence, without loss of generality, we suppose u 0 > c in Ω. Now, consider the maximal solution z of the ODE ż = f (z) with the initial data z(0) = inf{u 0 (x) / x ∈ Ω}. Condition (3.5) implies that its maximal existence time T z is finite:

T z = ∞ z(0) 1 f (y) dy < ∞.
Since ∇z = 0, z is a lower solution of Problem (3.6). Using the comparison principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], we obtain z(t) ≤ u(•, t) in Ω for t > 0. Thus, u must blow up in finite time with 0 < T < T z .

Remark 3.3. This section illustrates the damping effect of the dissipative dynamical boundary conditions: we have shown that for nontrivial σ ≥ 0 the maximal existence time of the solutions of Problem (1.1) can be strictly greater than the ones under the Neumann boundary conditions.

Blow-up

In this section, we investigate the blow-up in finite time for the solutions of Problems (1.2) and (1.3). Let G be a primitive of g and suppose that there exist α > 0 and q < p such that G(ω) ≤ αω q for ω > 0.

(4.1)

By applying the eigenfunction method (see [START_REF] Below | Blow Up for some non linear parabolic problems with convection under dynamical boundary conditions[END_REF], [START_REF] Friedman | Blow up of solutions of nonlinear parabolic equations[END_REF] and [START_REF] Kaplan | On the growth of solutions of quasi-linear parabolic equations[END_REF]), we obtain some conditions on the initial data u 0 which guarantee the finite time blow-up and we derive some upper bounds for the blow-up times. This is a general technique which can be applied to the following problem, where the boundary behaviour of the solutions is not involved:

   ∂ t u = ∆u -g(u) • ∇u + u p in Ω for t > 0, u ≥ 0 on ∂Ω for t > 0, u(•, 0) = u 0 in Ω. (4.2)
Henceforth, we denote by λ the first eigenvalue of -∆ in H 1 0 (Ω) and by ϕ an eigenfunction associated to λ satisfying with

ϕ ∈ H 1 0 (Ω), 0 < ϕ ≤ 1 in Ω. ( 4 
C = (p -1)|Ω| 4λ p -q 1 p-1 + 4q p -q q p-q α m Ω |∇ϕ| m dx , then the maximal classical solutions u of Problem (4.2) blow up in finite time T satisfying T ≤ 2 Ω u 0 ϕ m dx (p -1) |Ω| 1-p Ω u 0 ϕ m dx p -2C =: T . (4.5)
Proof. Define

M(t) = Ω u(x, t)ϕ(x) m dx.
Thus,

Ṁ (t) = Ω ∆uϕ m dx - Ω g(u) • ∇u ϕ m dx + Ω u p ϕ m dx.
First, we prove that

Ω ∆uϕ m dx ≥ -mλ|Ω| p-1 p Ω u p ϕ m dx 1 p . (4.6)
Observe that the behaviours of ϕ and ∂ ν ϕ on ∂Ω imply ∂Ω ∂ ν uϕ m ds = 0 and

∂Ω u∂ ν (ϕ m ) ds ≤ 0, (4.7) 
since u ≥ 0 on ∂Ω for t > 0. As in [START_REF] Quittner | Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States[END_REF], Equation (4.7) and Green's formula yield

Ω ∆uϕ m dx ≥ -mλ Ω uϕ m dx. (4.8) 
Since ϕ ≤ 1, Ω uϕ m dx ≤ Ω uϕ m p dx and by Hölder's inequality, (4.6) holds. Now, we show that

- Ω g(u) • ∇u ϕ m dx ≥ -mα Ω |∇ϕ| m dx 1 m Ω u p ϕ m dx q p .
(4.9) By Green's formula and by definition of G and ϕ, we have

- Ω g(u) • ∇u ϕ m dx = - Ω div(G(u))ϕ m dx = m Ω (G(u) • ∇ϕ)ϕ m-1 dx .
Equation (4.1) and Hölder's inequality lead to

Ω (G(u) • ∇ϕ)ϕ m-1 dx ≤ α Ω u q ϕ m-1 |∇ϕ| dx ≤ α Ω |∇ϕ| m dx 1 m Ω u p ϕ (m-1)p q dx q p ,
and (4.9) is satisfied. Henceforth, introduce

C 1 = mλ|Ω| p-1 p and C 2 = mα Ω |∇ϕ| m dx 1 m .
Then we obtain

Ṁ (t) ≥ Ω u p ϕ m dx -C 1 Ω u p ϕ m dx 1 p -C 2 Ω u p ϕ m dx q p . (4.10) 
Set

ε 1 = p 1 p 4 1 p C 1 and ε 2 = p q p (4q) q p C 2 .
Recall Young's inequality: for a > 0 and

ε > 0, a = εa ε ≤ ε r a r r + 1 sε s for r, s > 1 with r -1 + s -1 = 1. It yields C 1 Ω u p ϕ m dx 1 p ≤ 1 4 Ω u p ϕ m dx + p -1 pε p p-1 1 :=C 3 ,
and in the same way we have

C 2 Ω u p ϕ m dx q p ≤ 1 4 Ω u p ϕ m dx + C 4 , with C 4 = 1 mε m 2 . Then Ṁ (t) ≥ 1 2 Ω u p ϕ m dx -C with C = C 3 + C 4 > 0. By (4.
3) and Hölder's inequality, we obtain that

Ṁ (t) ≥ 1 2 |Ω| 1-p M p -C.
Since M is increasing with respect to t, owing to (4.4) we have

Ṁ(t) ≥ 1 2 |Ω| 1-p -CM(0) -p M p ,
and we can conclude that u can not exist globally. To derive an upper bound for the blow-up time, we integrate the previous differential inequality between 0 and t > 0. We obtain

M(t) ≥ M(0) 1-p -(p -1) 1 2 |Ω| 1-p -CM(0) -p t -1 p-1
.

Hence M blows up before T = M(0)

1-p (p -1) -1 1 2 |Ω| 1-p -CM(0) -p -1
, so does u. Thus, T ≤ T .

We can note that Condition (4.4) on the initial data is only necessary to derive an upper bound for the maximal existence time. Thanks to Theorem 2.1, we obtain:

Theorem 4.2. Let q < p and suppose G satisfies

lim sup ω→∞ G(ω) ω q < ∞.
Assume that σ and u 0 satisfy conditions (1.4), (1.5) and (1.8). All the positive solutions of Problem (1.2) blow up in finite time.

Proof. Let u be a positive solution of Problem (1.2). Theorem 2.1 permits to ensure that there exist t 0 > 0 and C > 0 such that u(•, t 0 ) is big enough to satisfy Equation (4.4) and G(u) ≤ Cu q in Ω for t > t 0 . Thus applying Theorem 4.1 to v(x, t) = u(x, t + t 0 ), we prove that v blows up in a finite time T v satisfying (4.5). Hence, u blows up in a finite time T u = t 0 + T v . Now, we prove the blow-up of positive solutions of Problem (1.3). Proof. Let u be a positive solution of Problem (1.3) and define v = e γu with γ ∈ (q, p) and γ > 1/2. As in the previous proof, we suppose that u is sufficiently big such that for some C > 0

|g(u)| ≤ Ce qu in Ω for t > 0. (4.11)
Computing the derivatives of v, we obtain

∂ t v = ∆v - 1 v |∇v| 2 -g(u) • ∇v + γv p+γ γ
in Ω for t > 0.

Using condition (4.11), we obtain

∂ t v ≥ ∆v - 1 v |∇v| 2 -Cv q γ |∇v| + γv p+γ γ
in Ω for t > 0.

Young's inequality

Cv q γ |∇v| ≤ C 2 2 |∇v| 2 + 1 2 v 2q γ , leads to ∂ t v ≥ ∆v - 2 + C 2 2 |∇v| 2 + γv p+γ γ - 1 2 v 2q γ in Ω for t > 0, since v ≥ 1. Morevover, we have γv p+γ γ - 1 2 v 2q γ ≥ (γ - 1 2 )v p+γ γ
by definition of γ. Thus, we obtain

   ∂ t v ≥ ∆v -µ|∇v| 2 + κv p+γ γ in Ω for t > 0, v ≥ 0 on ∂Ω for t > 0, v(•, 0) > 0 in Ω, (4.12) 
with µ = (2 + C 2 )/2 and κ = γ -1/2. Without loss of generality (see Theorem 2.1), we can suppose that v(•, 0) ≥ V (•, 0) in Ω, where

V (x, t) = (1 -εt) -1 p-1 W |x| (1 -εt) m , with 0 < m < min{ 1 2 , p-q q(p-1) }, W (y) = 1 + A/2 -y 2 /(2A), A > 1 m(p-1) and ε < 2κ(p-1)
2+A . According to Souplet & Weissler [START_REF] Ph | Self-similar subsolutions and blowup for non-linear parabolic equations[END_REF], V is a blowing-up subsolution for Problem (4.12). By the comparison principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], v ≥ V and u blows up in finite time.

Remark 4.1. In this section, we point out the accelerating effect of the dynamical boundary conditions, in comparison with the Dirichlet boundary conditions. Indeed, we prove that, even if the initial data u 0 is small, the solutions of Problem (1.2) blow up in finite time. But, if we replace the dynamical boundary conditions by the Dirichlet boundary conditions in the second equation of Problem (1.2), it is well known that the solutions are global and decay to 0 if the initial data are small enough, see for instance references [START_REF] Straughan | The energy method, Stability and Nonlinear Convection[END_REF] and [START_REF] Weissler | Existence and nonexistence of global solutions for a semilinear heat equation[END_REF].

Growth Order

In this section, we are interested in the blow-up rate for Problem (1.2) when approaching the blow-up time T . For the convection term, we assume that

g(u) = (g 1 (u), • • • , g n (u)) with g i (u) = u q ∀i = 1, • • • , n, 1 < q ∈ R. (5.1)
First, we derive a lower blow-up estimate for p > q + 1, valid for any nonnegative initial data u 0 ∈ C(Ω). 

(•, t) ∞ ≥ (p -1) -1 p-1 (T -t) -1 p-1 for 0 < t < T . Proof. Let t ∈ [0, T ). Denote by ζ ∈ C 1 ((0, t 1 )) the maximal solution of the IVP ζ = ζ p in (0, t 1 ) ζ(0) = u(•, t) ∞ with t 1 = 1 p -1 u(•, t) 1-p ∞ . Introduce v ∈ C(Ω×[0, T -t))∩C 2,1 (Ω×(0, T -t)) defined by v(x, s) = u(x, s + t) for x ∈ Ω and s ∈ [0, T -t). Then v is the maximal solution of the problem    ∂ t v = ∆v -g(v) • ∇v + v p in Ω for 0 < s < T -t, σ∂ t v + ∂ ν v = 0 on ∂Ω for 0 < s < T -t, v(•, 0) = u(•, t)
in Ω.

The comparison principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] implies that t 1 ≤ T -t.

This result remains valid for Problem (1.1) as soon as blow-up occurs. We just need a positive function f such that an explicit primitive of 1 f is known. We improve the technique developed in Theorem 2.3 in [START_REF] Below | Growth order and blow up points for the parabolic burgers' equation under dynamical boundary conditions[END_REF] for an onedimensional Burgers' problem and inspired by Friedman & McLeod [10] to prove that the growth order of the solution of Problem (1.2) amounts to -1/(p -1) for p > 2q + 1 > 3, when the time t approaches the blow-up time T . First, for ξ ∈ (0, T ), we shall prove that there exists δ > 0 such that

∂ t u ≥ δe -M t (u p + βu 2q+1 )
in Ω × [ξ, T ). Introduce

J = ∂ t u -δd(t)k(u)
with d(t) = e -M t and k(u) = u p + βu 2q+1 . Note that classical regularity results from [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF] yield J ∈ C 2,1 Ω × [ξ, T ) . We recall that Theorem 2.1 implies that there exists c > 0 such that ∂ t u ≥ c > 0 in Ω × [ξ, T ). Thus, we can choose δ > 0 sufficiently small such that J(•, ξ) ≥ 0 in Ω.

and by (5.5), the inequality (5.4) holds. Finally, we can conclude by the comparison principle from [START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF] that J ≥ 0 in Ω×[ξ, T ), in particular, ∂ t u ≥ εu p with ε > 0. Now, we shall derive the upper blow-up rate estimate of u( 

  the first equation in Problem (1.1) leads to m = 0, and we obtain u 0 ≡ 0, a contradiction with equation (1.8). Hence u > m ≥ 0 in Ω × (0, τ ].

  we have η ′ ≥ C 2 and Equation (3.2) is satisfied. Let K be a positive number such that K ≥ u 0 (x)e -Cx j -η(0) for all x ∈ Ω.Then by hypotheses (1.5), (1.8) and (3.2), the function U defined in Lemma 3.1 is an upper-solution of Problem (1.2) since U(•, 0) ≥ u 0 in Ω. Using the comparison principle from[START_REF] Below | A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions[END_REF], the unique solution u of Problem (1.1) satisfies 0 ≤ u(x, t) ≤ U(x, t) for all x ∈ Ω and t > 0 , thus u does not blow up.

∞ c 1 f 5 )

 15 (y) dy = ∞ for c > 0, see Theorem 3.2 from[START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF].Condition (3.2) on σ allows us to consider fast decaying functions σ, but, to ensure global existence, it is essential that σ does not vanish on the whole ∂Ω. Indeed let us prove the following blow-up result related to the Neumann boundary conditions, for σ ≡ 0 on ∂Ω.Theorem 3.4. Assume that σ ≡ 0, u 0 fulfills hypothesis (1.8) and f is positive in (0, ∞) such that ∞ c 1 f (y)dy < ∞ for some c > 0.(3.Then every positive solution of Problem (1.1) blows up in finite time.

. 3 ) 4 . 1 .

 341 Theorem Let α > 0, 1 < q < p, m = p/(p -q) and suppose G satisfies condition (4.1). Assume hypotheses (1.4) -(1.8) are fulfilled. If Ω u 0 ϕ m dx > (2|Ω| p-1 C)

Theorem 4 . 3 .

 43 Assume σ and u 0 satisfy conditions (1.4) -(1.8). If lim sup ω→∞ |g(ω)| e qω < ∞, then all the positive solutions of Problem (1.3) blow up in finite time.

Lemma 5 . 1 .

 51 Let p > q + 1, and assume hypotheses (1.4) -(1.8). Then the classical maximal solution u of Problem (1.2) satisfies u

Theorem 5 . 2 .

 52 Suppose conditions (1.4), (1.8), (2.1) and (5.1) are fulfilled. For p > 2q + 1 , (5.2) there exists a positive constant C such that the classical maximal solution u of Problem (1.2) satisfiesu(•, t) ∞ ≤ C (T -t) 1/p-1 f or t ∈ [0, T ). Proof. Let β > 1 such that p(p -1)(p -2q -

  •, t) ∞ for t ∈ [ξ, T ). For each x ∈ Ω, the integral → T . Integrating the inequality ∂ t u ≥ εu p leads to

	t	τ	∂ t u(x, s) u p (x, s)	ds =	u(x,τ ) u(x,t)	1 η p dη
	converges as τ ε(τ -t) ≤	u(x, τ ) 1-p -u(x, t) 1-p 1 -p	≤	u(x, t) 1-p p -1	.

Letting τ → T implies u(x, t) ≤ ε(p -1)(T -t) -1

p-1 and we can conclude as in the proof of Theorem 2.3 from

[START_REF] Below | Growth order and blow up points for the parabolic burgers' equation under dynamical boundary conditions[END_REF]

.
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J fulfills the boundary condition

Furthermore, J satisfies

where

To prove that H(u) ≥ 0, we shall show that

(5.4) Inequality (5.4) is trivial in the case where M ≥ q √ N u q-1 |∇u|. Now, suppose that M < q √ Nu q-1 |∇u|. When q √ N u q+1 ≤ 2q(2q + 1)|∇u|, we have q √ Nu q-1 u p |∇u| ≤ p(p -1)u p-2 |∇u| 2 and q √ Nu 3q |∇u| ≤ 2q(2q + 1)u 2q-1 |∇u| 2 since p > 3 then (5.4) follows. In the case where q √ N u q+1 > 2q(2q + 1)|∇u|, since

Moreover, (5.3) yields

Thus, multiplying by u p-2 , we are led to 2 √ N qu q-1 |∇u|u p ≤ β(p -2q -1)u p+2q + p(p -1)u p-2 |∇u| 2