Markerless Vision-Based Tracking of Partially Known 3D Scenes for Outdoor Augmented Reality Applications
Résumé
This paper presents a new robust and reliable marker less camera tracking system for outdoor augmented reality using only a mobile handheld camera. The proposed method is particularly efficient for partially known 3D scenes where only an incomplete 3D model of the outdoor environment is available. Indeed, the system combines an edge-based tracker with a sparse 3D reconstruction of the real-world environment to continually perform the camera tracking even if the model-based tracker fails. Experiments on real data were carried out and demonstrate the robustness of our approach to occlusions and scene changes.