Small values of the Euler function and the Riemann hypothesis - Archive ouverte HAL
Article Dans Une Revue Acta Arithmetica Année : 2012

Small values of the Euler function and the Riemann hypothesis

Jean-Louis Nicolas
  • Fonction : Auteur
  • PersonId : 919655

Résumé

Let $\vfi$ be Euler's function, $\ga$ be Euler's constant and $N_k$ be the product of the first $k$ primes. In this article, we consider the function $c(n) =(n/\vfi(n)-e^\ga\log\log n)\sqrt{\log n}$. Under Riemann's hypothesis, it is proved that $c(N_k)$ is bounded and explicit bounds are given while, if Riemann's hypothesis fails, $c(N_k)$ is not bounded above or below.
Fichier principal
Vignette du fichier
schinzel75..pdf (161.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00666154 , version 1 (03-02-2012)

Identifiants

Citer

Jean-Louis Nicolas. Small values of the Euler function and the Riemann hypothesis. Acta Arithmetica, 2012, 155 (3), pp.311-321. ⟨10.4064/aa155-3-7⟩. ⟨hal-00666154⟩
158 Consultations
263 Téléchargements

Altmetric

Partager

More