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Abstract

Let ϕ be Euler’s function, γ be Euler’s constant and Nk be the

product of the first k primes. In this article, we consider the function

c(n) = (n/ϕ(n)−eγ log log n)
√
log n. Under Riemann’s hypothesis, it

is proved that c(Nk) is bounded and explicit bounds are given while,

if Riemann’s hypothesis fails, c(Nk) is not bounded above or below.
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1 Introduction

Let ϕ be the Euler function. In 1903, it was proved by E. Landau (cf. [5,
§59] and [4, Theorem 328]) that

lim sup
n→∞

n

ϕ(n) log log n
= eγ = 1.7810724179 . . .

where γ = 0.5772156649 . . . is Euler’s constant.
In 1962, J. B. Rosser and L. Schoenfeld proved (cf. [9, Theorem 15])

(1.1)
n

ϕ(n)
6 eγ log log n+

2.51

log logn

for n > 3 and asked if there exists an infinite number of n such that
n/ϕ(n) > eγ log log n. In [6], (cf. also [7]), I answer this question in the
affirmative. Soon after, A. Schinzel told me that he had worked unsuccess-
fully on this question, which made me very proud to have solved it.

∗Research partially supported by CNRS, Institut Camille Jordan, UMR 5208.
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For k > 1, pk denotes the k-th prime and

Nk = 2 · 3 · 5 . . . pk

the primorial number of order k. In [6], it is proved that the Riemann
hypothesis (for short RH) is equivalent to

∀k > 1,
Nk

ϕ(Nk)
> eγ log logNk.

The aim of the present paper is to make more precise the results of [6] by
estimating the quantity

(1.2) c(n) =

(

n

ϕ(n)
− eγ log logn

)

√

log n.

Let us denote by ρ a generic root of the Riemann ζ function satisfying
0 < ℜρ < 1. Under RH, 1− ρ = ρ. It is convenient to define (cf. [2, p. 159])

(1.3) β =
∑

ρ

1

ρ(1− ρ)
= 2 + γ − log π − 2 log 2 = 0.0461914179 . . .

We shall prove

Theorem 1.1 Under the Riemann hypothesis (RH) we have

(1.4) lim sup
n→∞

c(n) = eγ(2 + β) = 3.6444150964 . . .

(1.5) ∀n > N120569 = 2 · 3 · . . . · 1591883, c(n) < eγ(2 + β).

(1.6) ∀n > 2, c(n) 6 c(N66) = c(2 · 3 · . . . · 317) = 4.0628356921 . . .

(1.7) ∀k > 1, c(Nk) > c(N1) = c(2) = 2.2085892614 . . .

We keep the notation of [6]. For a real x > 2, the usual Chebichev’s functions
are denoted by

(1.8) θ(x) =
∑

p6x

log p and ψ(x) =
∑

pm6x

log p.

We set

(1.9) f(x) = eγ log θ(x)
∏

p6x

(1− 1/p).

Mertens’s formula yields limx→∞ f(x) = 1. In [6, Th. 3 (c)] it is shown that,
if RH fails, there exists b, 0 < b < 1/2, such that

(1.10) log f(x) = Ω±(x
−b).
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For pk 6 x < pk+1, we have f(x) = eγ log log(Nk)
ϕ(Nk)
Nk

· When k → ∞,
by observing that the Taylor development in neighborhood of 1 yields
log f(pk) ∼ f(pk)− 1, we get

log f(pk) ∼ f(pk)− 1 =
ϕ(Nk)

Nk

c(Nk)√
logNk

∼ e−γ

log logNk

c(Nk)√
logNk

,

and it follows from (1.10) that, if RH does not hold, then

lim inf
n→∞

c(n) = −∞ and lim sup
n→∞

c(n) = +∞.

Therefore, from Theorem 1.1, we deduce :

Corollary 1.1 Each of the four assertions (1.4), (1.5), (1.6), (1.7) is equi-
valent to the Riemann hypothesis.

1.1 Notation and results used

If θ(x) and ψ(x) are the Chebichev functions defined by (1.8), we set

(1.11) R(x) = ψ(x)− x and S(x) = θ(x)− x.

Under RH, we shall use the upper bound (cf. [10, (6.3)])

(1.12) x > 599 =⇒ |S(x)| 6 T (x)
def
==

1

8π

√
x log2 x

P. Dusart (cf. [1, Table 6.6]) has shown that

(1.13) θ(x) < x for x ≤ 8 · 1011

thus improving the result of R. P. Brent who has checked (1.13) for x < 1011

(cf. [10, p. 360]). We shall also use (cf. [9, Theorem 10]

(1.14) θ(x) > 0.84 x >
4

5
x for x > 101.

As in [6], we define the following integrals

(1.15) K(x) =

∫

∞

x

S(t)

t2

(

1

log t
+

1

log2 t

)

dt,

(1.16) J(x) =

∫

∞

x

R(t)

t2

(

1

log t
+

1

log2 t

)

dt,

and, for ℜ(z) < 1,

(1.17) Fz(x) =

∫

∞

x

tz−2

(

1

log t
+

1

log2 t

)

dt.
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We also set for x > 1

(1.18) W (x) =
∑

ρ

xiℑ(ρ)

ρ(1− ρ)

so that, under RH, from (1.3) we have

(1.19) |W (x)| 6 β =
∑

ρ

1

ρ(1− ρ)
·

We often implicitly use the following result : for a and b positive, the function

(1.20) t 7→ loga t

tb
is decreasing for t > ea/b

and

(1.21) max
t>1

loga t

tb
=

( a

e b

)a

.

1.2 Organization of the article

In Section 2, the results of [6] about f(x) are revised so as to get effective
upper and lower bounds for both log f(x) and 1/f(x) − 1 under RH (cf.
Proposition 2.1).

In Section 3, we study c(Nk) and c(n) in terms of f(pk).
Section 4 is devoted to the proof of Theorem 1.1.

2 Estimate of log(f(x))

The following lemma is Proposition 1 of [6].

Lemma 2.1 For x > 121, we have

(2.1) K(x)− S2(x)

x2 log x
6 log f(x) 6 K(x) +

1

2(x− 1)
.

The next lemma is a slight improvement of Lemma 1 of [6].

Lemma 2.2 Let x be a real number, x > 1. For ℜz < 1, we have

(2.2) Fz(x) =
xz−1

(1− z) log x
+ rz(x) with rz(x) =

∫

∞

x

− ztz−2

(1− z) log2 t
dt

and, if ℜz = 1/2,

(2.3) |rz(x)| 6
1

|1− z|√x log2 x

(

1 +
4

log x

)

.
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Moreover, for z = 1/2, we have

(2.4)
2√

x log x
− 2√

x log2 x
6 F1/2(x) 6

2√
x log x

− 2√
x log2 x

+
8√

x log3 x

and, for z = 1/3,

(2.5) 0 6 F1/3(x) 6
3

2x2/3 log x
·

Proof : The proof of (2.2) is easy by taking the derivative. By partial
summation, we get

(2.6) rz(x) = − z

1− z

(

xz−1

(1− z) log2 x
+

∫

∞

x

2 tz−2

(z − 1) log3 t
dt

)

.

If we assume ℜz = 1/2, we have 1− z = z and

|rz(x)| 6
1

|1− z|√x log2 x
+

2

|1− z| log3 x

∫

∞

x

t−3/2dt

which yields (2.3). The proof of (2.4) follows from (2.2) and (2.6) by choosing
z = 1/2. The proof of (2.5) follows from (2.2) since r1/3 is negative. �

To estimate the difference J(x)−K(x), we need Lemma 2.4 which, under
RH, is an improvement of Propositions 3.1 and 3.2 of [1] (obtained without
assuming RH). The following lemma will be useful for proving Lemma 2.4.

Lemma 2.3 Let κ = κ(x) = ⌊ log x
log 2

⌋ the largest integer such that x1/κ > 2.
For x > 16, we set

H(x) = 1 +
κ

∑

k=4

x1/k−1/3

and for x > 4

L(x) =

κ
∑

k=2

ℓk(x) with ℓk(x) =
T (x1/k)

x1/3
=

log2 x

8π k2x1/3−1/(2k)
·

(i) For j > 9 and x > 2j, H(x) 6 H(2j) holds.
(ii) For j > 35 and x > 2j, L(x) 6 L(2j) holds.

Proof : The function H is continuous and decreasing on [2j, 2j+1) ; so, to
show (i), it suffices to prove for j > 9

(2.7) H(2j) > H(2j+1).
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If 9 6 j 6 19, we check (2.7) by computation. If j > 20, we have

H(2j)−H(2j+1) =

j
∑

k=4

2j(
1

k
−

1

3)
(

1− 2(
1

k
−

1

3)
)

− 2(j+1)( 1

j+1
−

1

3)

> 2j(
1

4
−

1

3)
(

1− 2(
1

4
−

1

3)
)

− 2(j+1)( 1

j+1
−

1

3)

= 2−
j
3

[

(1− 2−
1

12 )2
j
4 − 2

2

3

]

which proves (2.7) since the above bracket is > (1−2−
1

12 )2
20

4 −2
2

3 = 0.208 . . .
and therefore positive.

Let us assume that j > 35 so that 2j > e24 holds. From (1.20), for each
k > 2, x 7→ ℓk(x) is decreasing for x > 2j so that L is decreasing on [2j , 2j+1)
and, to show (ii), it suffices to prove

(2.8) L(2j) > L(2j+1).

We have

L(2j)− L(2j+1) =

j
∑

k=2

{

ℓk(2
j)− ℓk(2

j+1)
}

− ℓj+1(2
j+1)

> ℓ2(2
j)− ℓ2(2

j+1)− ℓj+1(2
j+1)

=
log2 2

32π
2−

j
3

{

2
j
4

[

j2 − 2−
1

12 (j + 1)2
]

− 4 · 2 1

6

}

.

For j > 1
21/12−1

= 16.81 . . ., the above square bracket is increasing on j and
it is positive for j = 35. Therefore, the curly bracket is increasing for j > 35
and, since its value for j = 35 is equal to 744.17 . . ., (2.8) is proved for
j > 35. �

Lemma 2.4 Under RH, we have

(2.9) ψ(x)− θ(x) >
√
x, for x > 121

and, for x > 1,

(2.10)
ψ(x)− θ(x)−√

x

x1/3
6 1.332768 . . . 6

4

3
·

Proof : For x < 5993, we check (2.9) by computation. Note that 599 is
prime. Let q0 = 1, and let q1 = 4, q2 = 8, q3 = 9, . . . , q1922 = 5993 be the
sequence of powers (with exponent > 2) of primes not exceeding 5993. On
the intervals [qi, qi+1), the function ψ − θ is constant and x 7→ (ψ(x) −
θ(x))/

√
x is decreasing. For 11 6 i 6 1921 (i.e. 121 6 qi < qi+1 6 5993), we

calculate δi = (ψ(qi) − θ(qi))/
√
qi+1 and find that min116i61921 δi = δ1886 =

1.0379 . . . (q1886 = 206468161 = 143692) while δ10 = 0.9379 . . . < 1 (q10 =
81).
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Now, we assume x > 5993, so that, by (1.12), we have

(2.11) ψ(x)− θ(x) > θ(x1/2) + θ(x1/3) > x1/2 + x1/3 − T (x1/2)− T (x1/3).

By using (1.21), we get

T (x1/2)

x1/3
+
T (x1/3)

x1/3
=

1

8π

(

log2 x

4x1/12
+

log2 x

9x1/6

)

6
20

πe2
= 0.86157 . . .

which, with (2.11), implies

(2.12) ψ(x)− θ(x) >
√
x+

(

1− 20

πe2

)

x1/3 >
√
x.

The inequality (2.10) is Lemma 3 of [8]. We give below another proof by
considering three cases according to the values of x.

Case 1, 1 6 x < 232. The largest qi smaller than 232 is q6947 = 4293001441 =
655212. On the intervals [qi, qi+1), the function

G(x)
def
==

ψ(x)− θ(x)−√
x

x1/3

is decreasing. By computing G(q0), G(q1), . . . , G(q6947) we get

G(x) 6 G(q103) = 1.332768 . . . [q103 = 80089 = 2832].

Case 2, 232 6 x < 64 · 1022. By using (1.13), we get

ψ(x)− θ(x) =
κ

∑

k=2

θ(x1/k) 6
κ

∑

k=2

x1/k

so that Lemma 2.3 implies G(x) 6 H(x) 6 H(232) = 1.31731 . . .

Case 3, x > 64 · 1022 > 279. By (1.12) and (1.13), we get

ψ(x)− θ(x) =

κ
∑

k=2

θ(x1/k) 6

κ
∑

k=2

{

x1/k + T (x1/k)
}

,

whence, from Lemma 2.3, G(x) 6 H(x) + L(x) 6 H(279) + L(279) =
1.32386 . . . �

Corollary 2.1 For x > 121, we have

(2.13) F1/2(x) 6 J(x)−K(x) 6 F1/2(x) +
4

3
F1/3(x).

The following lemma is an improvement of [6, Proposition 2].
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Lemma 2.5 Let us assume that RH holds. For x > 1, we may write

(2.14) J(x) = − W (x)√
x log x

− J1(x)− J2(x)

with

(2.15) 0 < J1(x) 6
log(2π)

x log x
and |J2(x)| 6

β√
x log2 x

(

1 +
4

log x

)

.

Proof : In [6, (17)–(19)], for x > 1, it is proved that

J(x) = −
∑

ρ

1

ρ
Fρ(x)− J1(x)

with J1 satisfying 0 < J1(x) 6
log(2π)
x log x

·
Now, by Lemma 2.2, we have Fρ(x) = xρ−1

(1−ρ) log x
+ rρ(x) which yields

(2.14) by setting J2(x) =
∑

ρ
1
ρ
rρ(x). Further, from (2.3) and (1.3), we get

the upper bound for |J2(x)| given in (2.15). �

Proposition 2.1 Under RH, for x > x0 = 109, we have

(2.16) −2 +W (x)√
x log x

+
0.055√
x log2 x

6 log f(x) 6 −2 +W (x)√
x log x

+
2.062√
x log2 x

and

(2.17)
2 +W (x)√
x log x

− 2.062√
x log2 x

6
1

f(x)
− 1 6

2 +W (x)√
x log x

− 0.054√
x log2 x

·

Proof : By collecting the information from (2.1), (1.12), (2.13), (2.14),
(2.15), (2.4) and (2.5), for x > 599, we get

log f(x) > −W (x) + 2√
x log x

+
2− β√
x log2 x

− 8 + 4β√
x log3 x

− log(2π)

x log x
− 2

x2/3 log x
− log3 x

64π2 x
(2.18)

and

(2.19) log f(x) 6 −W (x) + 2√
x log x

+
2 + β√
x log2 x

+
4β√
x log3 x

+
1

2(x− 1)
·

Since x > x0 = 109 holds, (2.18) and (2.19) imply respectively

log f(x) > −W (x) + 2√
x log x

+
1√

x log2 x

(

2− β − 8 + 4β

log x0

− log(2π) log x0√
x0

− 2 log x0

x
1/6
0

− log5 x0
64π2

√
x0

)

(2.20)
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and

(2.21) log f(x) 6 −W (x) + 2√
x log x

+
1√

x log2 x

(

2 + β +
4β

log x0
+

√
x0 log

2 x0
2(x0 − 1)

)

which prove (2.16).
Setting v = − log f(x), it follows from (2.16), (1.19) and (1.3) that

v 6
W (x) + 2√
x log x

6
2 + β√
x log x

6 v0
def
==

2 + β√
x0 log x0

= 0.00000312 . . .

By Taylor’s formula, we have ev − 1 > v (which, with (2.16), provides the
lower bound of (2.17)) and

ev − 1− v 6
ev0

2
v2 6

ev0(2 + β)2

2x log2 x
6

ev0(2 + β)2

2
√
x0
√
x log2 x

=
0.0000662 . . .√

x log2 x

(which implies the upper bound in (2.17)). �

3 Bounding c(n)

Lemma 3.1 Let n and k be two integers satisfying n > 2 and k > 1. Let
us assume that either the number j = ω(n) of distinct prime factors of n is
equal to k or that Nk 6 n < Nk+1 holds. We have

(3.1) c(n) 6 c(Nk).

Proof : It follows from our hypothesis that n > Nk and j 6 k hold. Let us
write n = qα1

1 qα2

2 . . . q
αj

j (with q1 < q2 < . . . < qj as defined in the proof of
Lemma 2.4). We have

n

ϕ(n)
=

j
∏

i=1

1

1− 1/qi
6

j
∏

i=1

1

1− 1/pi
6

k
∏

i=1

1

1− 1/pi
=

Nk

ϕ(Nk)

which yields

(3.2) c(n) 6

(

Nk

ϕ(Nk)
− eγ log log n

)

√

logn
def
== h(n)

and h(n) can be extended to a real number n. Further,

d

dn
h(n) =

1

2n
√
log n

(

Nk

ϕ(Nk)
− eγ log log n− 2eγ

)

6
1

2n
√
log n

(

Nk

ϕ(Nk)
− eγ log logNk − 2eγ

)

.

If k = 1 or 2, it is easy to see that the above parenthesis is negative, while, if
k > 3, by (1.1), it is smaller than 2.51

log logNk
−2eγ which is also negative because

log logNk > log log 30 = 1.22 . . . Therefore, we get h(n) 6 h(Nk) = c(Nk),
which, with (3.2), completes the proof of Lemma 3.1. �
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Proposition 3.1 Let us assume that x0 = 109 6 pk 6 x < pk+1 holds.
Under RH, we have

(3.3) c(Nk) 6 eγ(2 +W (x))− 0.07

log x
6 eγ(2 + β)− 0.07

log x

and

(3.4) c(Nk) > eγ(2 +W (x))− 3.7

log x
> eγ(2− β)− 3.7

log x
·

Proof : From (1.2) and (1.9), we get

(3.5) c(Nk) = eγ
√

θ(x) log θ(x)

(

1

f(x)
− 1

)

·

By the fundamental theorem of calculus, (1.14) and (1.12), we have

|
√

θ(x) log θ(x)−
√
x log x| =

∣

∣

∣

∣

∣

∫ θ(x)

x

log t+ 2

2
√
t

dt

∣

∣

∣

∣

∣

6 |θ(x)− x| log(4x/5) + 2

2
√

4x/5

6

√
5

4
T (x)

log x+ 2√
x

=

√
5

32π
log2 x(log x+ 2)

whence
∣

∣

∣

∣

∣

√

θ(x) log θ(x)√
x log x

− 1

∣

∣

∣

∣

∣

6

√
5 log2 x(log x+ 2)

32π
√
x log x

6

√
5 log2 x0(log x0 + 2)

32π
√
x0 log x

6
0.0069

log x
·

Therefore, (3.5), (2.17) and (1.19) yield

c(Nk) 6 eγ
(

2 +W (x)− 0.054

log x

)(

1 +
0.0069

log x

)

6 eγ(2 +W (x))− eγ

log x
(0.054− 0.0069(2 + β))

which proves (3.3). The proof of (3.4) is similar. �

4 Proof of Theorem 1.1

It follows from (3.1), (3.3) and (3.4) that

lim sup
n→∞

c(n) = eγ(2 + lim sup
x→∞

W (x)).

As observed in [6, p. 383], by the pigeonhole principle (cf. [3, §2.11] or [4,
§11.12]), one can show that lim supx→∞

W (x) = β, which proves (1.4).
To show the other points of Theorem 1.1, we first consider k0 = 50847534,

the number of primes up to x0 = 109. For all k 6 k0, we have calculated
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c(Nk) in Maple with 30 decimal digits, so that we may think that the first
ten are correct.

We have found that for k1 = 120568 < k 6 k0, c(Nk) < eγ(2 + β) holds
(while c(Nk1) = 3.6444180 . . . > eγ(2 + β)) and for 1 6 k 6 k0, we have
c(N1) = c(2) 6 c(Nk) 6 c(N66).

Further, for k > k0, (3.3) implies c(Nk) < eγ(2 + β) < c(N66) which,
together with Lemma 3.1, proves (1.5) and (1.6).

As a challenge, for k1 = 120568, I ask to find the largest number M such
that M < Nk1+1 and c(M) > eγ(2+β). Note that M > Nk1 holds since, for
n = Nk1−1pk1+1, we have c(n) = 3.6444178 . . . > eγ(2+β). Another challenge
is to determine all the n’s satisfying n < Nk1+1 and c(n) > eγ(2 + β).

Finally, for k > k0, (3.4) implies

c(Nk) > eγ(2− β)− 3.7

log(109)
= 3.30 . . . > c(2)

which completes the proof of (1.7) and of Theorem 1.1. �

It is not known if lim infx→∞W (x) = −β. Let ρ1 = 1/2 + i t1 with t1 =
14.13472 . . . the first zero of ζ . By using a theorem of Landau (cf. [3, Th. 6.1
and §2.4]), it is possible to prove that lim infx→∞W (x) 6 −1/(ρ1(1−ρ1)) =
−0.00499 . . . A smaller upper bound is wanted.

An interesting question is the following : assume that RH fails. Is it
possible to get an upper bound for k such that k > k0 and either c(Nk) >
eγ(2 + β) or c(Nk) < c(2) ?
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