How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D'Alembert" - Archive ouverte HAL
Article Dans Une Revue Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées Année : 2012

How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D'Alembert"

Résumé

Navier-Cauchy format for Continuum Mechanics is based on the concept of contact interaction between subbodies of a given continuous body. In this paper it is shown how -by means of the Principle of Virtual Powers- it is possible to generalize Cauchy representation formulas for contact interactions to the case of N-th gradient continua, i.e. continua in which the deformation energy depends on the deformation Green-Saint-Venant tensor and all its N-1 order gradients. In particular, in this paper the explicit representation formulas to be used in N-th gradient continua to determine contact interactions as functions of the shape of Cauchy Cuts are derived. It is therefore shown that i) these interactions must include edge (i.e. concentrated on curves) and wedge (i.e. concentrated on points) interactions, and ii) these interactions cannot reduce simply to forces: indeed the concept of K-forces (generalizing similar concepts introduced by Rivlin, Mindlin, Green and Germain) is fundamental and unavoidable in the theory of N-th gradient continua.
Fichier principal
Vignette du fichier
dellisola_seppecher_madeo.pdf (392.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00662376 , version 1 (23-01-2012)

Identifiants

  • HAL Id : hal-00662376 , version 1

Citer

Francesco Dell'Isola, Pierre Seppecher, Angela Madeo. How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D'Alembert". Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées, 2012, 63 (6), pp.1119-1141. ⟨hal-00662376⟩
348 Consultations
1139 Téléchargements

Partager

More