Absence of solitons with sufficient algebraic localization for the Novikov-Veselov equation at nonzero energy
Résumé
We show that the Novikov--Veselov equation (an analog of KdV in dimension 2 + 1) at positive and negative energies does not have solitons with the space localization stronger than O( | x |^{ -3 } ) as | x | \to \infty.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...