Efficient multi-object segmentation of 3D medical images using clustering and graph cuts - Archive ouverte HAL Access content directly
Conference Papers Year : 2011

Efficient multi-object segmentation of 3D medical images using clustering and graph cuts

Abstract

We propose an application of multi-label ''Graph Cut" optimization algorithms to the simultaneous segmentation of multiple anatomical structures, initialized via an over-segmentation of the image computed by a fast centroidal Voronoi diagram (CVD) clustering algorithm. With respect to comparable segmentations computed directly on the voxels of image volumes, we demonstrate performance improvements on both execution speed and memory footprint by, at least, an order of magnitude, making it possible to process large volumes on commodity hardware which could not be processed pixel-wise.
Fichier principal
Vignette du fichier
kechichian-et-al-icip-2011.pdf (275.5 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00658028 , version 1 (09-01-2012)

Identifiers

Cite

Razmig Kéchichian, Sébastien Valette, Michel Desvignes, Rémy Prost. Efficient multi-object segmentation of 3D medical images using clustering and graph cuts. ICIP 2011 - 18th IEEE International Conference on Image Processing, Sep 2011, Bruxelles, Belgium. pp.2149-2152, ⟨10.1109/ICIP.2011.6116036⟩. ⟨hal-00658028⟩
354 View
275 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More