
HAL Id: hal-00658028
https://hal.science/hal-00658028v1

Submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient multi-object segmentation of 3D medical
images using clustering and graph cuts

Razmig Kéchichian, Sébastien Valette, Michel Desvignes, Rémy Prost

To cite this version:
Razmig Kéchichian, Sébastien Valette, Michel Desvignes, Rémy Prost. Efficient multi-object seg-
mentation of 3D medical images using clustering and graph cuts. ICIP 2011 - 18th IEEE
International Conference on Image Processing, Sep 2011, Bruxelles, Belgium. pp.2149-2152,
�10.1109/ICIP.2011.6116036�. �hal-00658028�

https://hal.science/hal-00658028v1
https://hal.archives-ouvertes.fr


EFFICIENT MULTI-OBJECT SEGMENTATION OF 3D MEDICAL IMAGES
USING CLUSTERING AND GRAPH CUTS
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ABSTRACT

We propose an application of multi-label “Graph Cut” op-
timization algorithms to the simultaneous segmentation
of multiple anatomical structures, initialized via an over-
segmentation of the image computed by a fast centroidal
Voronoi diagram (CVD) clustering algorithm. With respect
to comparable segmentations computed directly on the voxels
of image volumes, we demonstrate performance improve-
ments on both execution speed and memory footprint by, at
least, an order of magnitude, making it possible to process
large volumes on commodity hardware which could not be
processed pixel-wise.

Index Terms— Medical image segmentation, clustering,
graph-cuts

1. INTRODUCTION

The analysis of CT medical images presents certain chal-
lenges. The presence of noise can create deceptive borders
inside anatomical structures, which, in their turn, are often
surrounded by other structures having similar appearances.
This results in weak object edges which complicate organ
extraction tasks. Moreover, the form of targeted structures
often varies between individuals.

In recent years, semi-automatic organ extraction meth-
ods have become the alternative to fully-automatic methods.
A simple paradigm of interactivity relying on reasonable
amount of physician input, which can be refined as needed,
can bring resolution to ambiguous decisions made by an al-
gorithm, also making it possible to control the result. Such
an approach represents an attractive replacement to man-
ual organ segmentation methods which require significant
investments of time and effort.

Many methods have been proposed in the application do-
main of semi-automatic segmentation [1]. Our preference
goes to global methods of proven optimality and statistical
robustness that describe a segmentation with a cost function,
defined in terms of regional and boundary properties of seg-
ments. User interaction is carried out by the attribution of
pixel labels (seeds) to targeted structures, one for each type of

structure. This provides clues on what the user intends to seg-
ment and therefore can be used to collect appearance statistics
of targeted objects and to constrain the solution space of the
algorithm.

“Graph Cut” approaches are a family of traditionally bi-
nary global optimization methods that have been widely ap-
plied to mono-object segmentation problems [2], where the
segmentation cost function is represented by a weighted reg-
ular graph defined on image voxels. The minimum cut on this
graph, equal to the maximum flow, is computed exactly in
low-order polynomial time [3]. It optimizes the cost function
globally hence finding the optimal segmentation. Multi-label
generalizations of the approach [4] are not globally optimal,
but are nevertheless capable of finding a local solution within
a constant factor of the global optimum. These methods have
been little exploited in multi-object segmentation.

In an attempt to improve the performance of “Graph Cut”
algorithms, methods have been devised to reduce its data
space yielding smaller graphs [5, 6]. Exploiting the fact that
these algorithms lend themselves equally well to irregular
non-grid graphs, we over-segment an image by a fast cen-
troidal Voronoi diagram (CVD) clustering [7], which has
ideal cluster size and color compactness properties, and use
cluster barycenters and adjacency to define the graph repre-
senting our segmentation cost function to be optimized via
multi-label “Graph Cut” algorithms. The efficiency of our
approach is demonstrated in section 3 in two applications;
simultaneous segmentation of principal thoracic cage struc-
tures and complete hip bone structure extraction from Visible
Human CT datasets [8]. We are able to achieve performance
improvements on both execution speed and memory footprint
by, at least, an order of magnitude, while obtaining compa-
rable results to those of segmentations computed directly on
the voxels of the image.

2. PROPOSED APPROACH

We define an imageI as a finite set of voxels, each voxelv is
represented by a vectorv = (x y z Iv), where the first three
components correspond to voxel coordinates in image space
and the last component is the voxel’s intensity, i.e. its gray
level.



2.1. Centroidal Voronoi diagrams

Given an imageI, andn sitesci where0 ≤ i ≤ n − 1, the
Voronoi diagram is defined on the image asn distinct regions
Ci such that:

Ci = {v ∈ I |d(v, ci) < d(v, cj); 0 ≤ j ≤ n−1, j 6= i} (1)

whered(·, ·) is a distance measure.
A centroidal Voronoi diagram (CVD) has the additional

property that each siteci is also the mass centroid (the
barycenter) of the associated region:

ci =

∫

Ci
v · ρ(v)dv

∫

Ci
ρ(v)dv

(2)

whereρ(v) is a density function forCi, which we define to
obtain a gradient-adaptive CVD asρ(v) = a|∇Iv|+ b, where
|∇Iv| is the magnitude of the image gradient at voxelv.

A CVD can be constructed on an imageI by minimizing
the following energy function:

ECVD =

n
∑

i=1





∑

vj∈Ci

∫

vj

ρ(v)‖v − ci‖
2dv



 (3)

which intuitively corresponds to maximizing region compact-
ness in terms of size and color. We use an iterative algorithm
[7] that approximates a CVD and minimizes the energy func-
tion 3 globally in a computationally-efficient manner, involv-
ing only local queries.

2.2. Multi-label “Graph Cut” segmentation

Like many vision problems, segmentation can be formulated
in terms of energy minimization. Given an imageI and a
set of labelsL, one label for each targeted object, the task
is to find a mappingf : I 7→ L; f(v) = lv that minimizes
some cost function. We use the following energy function
which can be justified on Bayesian grounds in the context of
maximum a posteriori estimation of Markov random fields
(MAP-MRF) [9]:

El =
∑

v∈I

D(lv) +
∑

{u,v}∈N

K{u,v} · T (lu 6= lv) (4)

whereN is a neighborhood system defined on voxels. The
unary termD(·) is a function derived from observed data and
measures the cost of assigning the labellv to the voxelv, and
the binary termK{u,v} ·T (lu 6= lv) imposes spatial coherence
by penalizing the assignment of different labels to neighbor
voxels, sinceT (·) = 1 when the condition within the paren-
theses holds. Defining the energy function 4 on the clusters
of a CVD-clustered imageC(I) gives the following energy
function:

El =
∑

C∈C(I)

D(lC) +
∑

{C1,C2}∈N

K{C1,C2} · T (lC1
6= lC2

) (5)

where the neighborhood systemN is defined by cluster adja-
cency, which is no longer a regular grid graph.

For every identified object in the image, we estimate the
probability distribution of object intensityPl(·) from user-
provided seeds, and define the energy function’s unary term
D(·) according to the underlying MAP-MRF formulation:

D(lC) = − log (Pl(IC)) (6)

whereIC is the average intensity of cluster voxels for the clus-
ter C. Note that when a seed is part of a cluster, the unary
function for the corresponding label on the cluster is equalto
zero, indicating no cost for the assignment of the label to the
cluster. Conversely, the unary function for other labels onthe
cluster is prohibitively large, thus taking advantage of user in-
put to constrain the solution space of the algorithm. We define
the constantK{C1,C2} of the energy function’s binary term so
that it preserves sharp discontinuities at object boundaries en-
couraging constant labeling elsewhere:

K{C1,C2} = |∂C1 ∩ ∂C2| e
−
(IC1

−IC2
)
2

2σ2 (7)

where|∂C1 ∩ ∂C2| is the length (in 3D, the surface) of the
common boundary of adjacent clustersC1 andC2.

Finally we introduce the cluster size|C| in the unary term
and rewrite equation 5 so that its dimensions are coherent:

El =
∑

C∈C(I)

√

− log (Pl(IC)) · |C| (8)

+
∑

{C1,C2}∈N

|∂C1 ∩ ∂C2| e
−
(IC1

−IC2
)
2

2σ2 · T (lC1
6= lC2

)

This is the energy function we minimize to compute a seg-
mentation. In mono-object segmentation, where the number
of labels|L| = 2, the global minimum of the energy function
8 can be computed exactly in low-order polynomial time by
finding the minimum cut on a weighted graph representing the
energy function, which is equal to the maximum flow in the
graph [3]. In multi-object segmentation tasks however, where
|L| > 2, energy minimization is equivalent to the multi-way
graph cut problem, which is NP-hard. Algorithms that com-
pute a local minimum within a known factor of the global
minimum have been proposed [4].α-expansion is one such
algorithm that finds a solution within a factor of 2 from the
global minimum for our energy function. It can be applied
when the binary energy term is sub-modular [10]:

∀a, b, c ∈ L; E(a, a) + E(b, c) ≤ E(a, c) + E(b, a) (9)

which holds for our energy function.

3. EXPERIMENTAL RESULTS

We give the results and performance figures of several exper-
imental mono and multi-object segmentations on CT images



(a) (b)

(c) (d)

(e) (f)

Fig. 1. Multi-object segmentation in 2D: a) CT cross-section at
heart level b) seed-marked image, one color for each type of structure
c) result ofα-expansion multi-label segmentation applied to image
pixels d) CVD clustering where number of clusters = 2% of number
of pixels e)α-expansion multi-label segmentation applied to a CVD
clustering where number of clusters = 10% of number of pixelsand
f) 2% of number of pixels. Percentage of pixels labelled differently
with respect to c) 2.78% for e) and 5.3% for f)

from the Visible Human male and female datasets [8]. Our
implementation uses as its back-end max-flow/min-cut and
multi-label optimization libraries developed by the Computer
Vision Research Group at the University of Western Ontario
[3, 4, 10]. In all the experiments, a small number of seeds
were placed inside targeted structures in a few selected slices
of the image volume according to an anatomical atlas. Fig-
ure 1 compares three multi-object segmentation results in 2D,
computed on image voxels and two CVD clusterings thereof.
The aim was to extract bones, lungs, muscular and other tis-
sues from the image.

It is interesting to point out that, contrarily to the widely-
held opinion that “Graph Cut” segmentation methods are in-
herently incapable of extracting thin elongated objects [2],
figure 1 shows a reasonable extraction of pulmonary veins by
means of what is essentially an unrefined segmentation.

Tables 1 and 2 chart the performance of mono and multi-
object segmentations performed on four 3D images, applied
to image voxels and CVD-clustered images using a number
of clusters equal to 1, 5 and 10 percent of the number of
voxels. Results were obtained on a 4-core machine running
at 2.84GHz with 4 GBs of main memory. Times are given
in seconds and memory footprints in megabytes. “N/A” is
indicated where a back-end was unable to allocate memory,
making it impossible to proceed with segmentation. From the
tables, it is obvious that execution time is linear in the number
of graph nodes, and that the clustering allows us to segment
large volumes which could not be processed pixel-wise. We
believe that the relatively-long clustering time is insignificant
since it can be performed off-line before the image is pre-
sented to a physician for interactive segmentation. Figure2
shows segmentation results for the second image in each ta-
ble. It illustrates segmentations of thoracic cage structures
and complete hip and hand bones on CT images of Visible
Human male and female datasets respectively.

4. CONCLUSIONS AND FUTURE WORK

We have presented an efficient coupling of centroidal Voronoi
diagram (CVD) clustering and multi-label “Graph Cut” opti-
mization algorithms applied to the simultaneous segmentation
of multiple anatomical structures in medical images, improv-
ing significantly on execution speed and memory footprint of
segmentations computed directly on the voxels of the image,
without compromising segmentation quality.

While the approach allows for demonstrably good seg-
mentations as it is, there is much room for further improve-
ment and experimentation. The approach can be readily
applied to the analysis of medical images originating from
different modalities, importantly MR imaging. Higher-order
cluster statistics can be used to develop more expressive
energy functions. Ultimately, statistical priors on organap-
pearance derived from the imaging modality and interorgan
spatial relationships could be introduced in the framework
of multi-label “Graph Cut” optimization, which would result
in a principled multi-object segmentation approach based on
medical imaging and anatomical concepts.
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