Segmentation et classification de points 3D obtenus à partir de relevés laser terrestres : une approche par super-voxels
Résumé
Une méthode de classification de données 3D éparses obtenues à partir de relevés laser terrestres en environment urbain est présentée. Elle est fondée sur une technique de segmentation manipulant des super-voxels. Le nuage de points 3D est tout d'abord divisé en voxels caractérisés par plusieurs attributs. Ils deviennent des super-voxels qui sont liés entre eux pour former des objets par une méthode de chainage plutôt que par une croissance de régions classique. Ces objets sont ensuite classifiés à partir de modèles géométriques et des descripteurs locaux. Afin d'évaluer les résultats, une nouvelle métrique est introduite. Elle caractérise à la fois les résultats de la segmentation et de la classification. L'influence sur les résultats de classification de la taille du voxel et de l'incorporation des informations couleur RVB et intensité de réflectance dans le super-voxel est aussi analysée
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...