Visual working memory for shape and 3D-orientation: a PET study.
Résumé
In order to determine the neural substrate of working memory for shape and 3D-orientation, regional cerebral blood flow (rCBF) changes were estimated using positron emission tomography (PET). Subjects were scanned during the performance of two delayed-matching-to-sample tasks using flat polydedrical objects of different shapes and 3D-orientations presented in a virtual environment. The shape matching task was associated with activation in the occipito-temporal junction, occipito-parietal cortex and mesial frontal pole of the right hemisphere. During the orientation matching task, rCBF increased in the mesial occipito-temporal cortex, superior temporal gyrus and middle frontal gyrus of the left hemisphere. The right supramarginal gyrus was also activated. These results suggest that both visual pathways are engaged in the processing of objects presented in different orientations. The dorsal stream is involved mainly in working memory of 3D-orientation, while the ventral stream is involved especially in shape working memory.