Spatial associations in relational reasoning: evidence for a SNARC-like effect.
Résumé
Relational reasoning (A > B, B > C, therefore A > C) shares a number of similarities with numerical cognition, including a common behavioural signature, the symbolic distance effect. Just as reaction times for evaluating relational conclusions decrease as the distance between two ordered objects increases, people need less time to compare two numbers when they are distant (e.g., 2 and 8) than when they are close (e.g., 3 and 4). Given that some remain doubtful about such analogical representations in relational reasoning, we determine whether numerical cognition and relational reasoning have other overlapping behavioural effects. Here, using relational reasoning problems that require the alignment of six items, we provide evidence showing that the subjects' linear mental representation affects motor performance when evaluating conclusions. Items accessible from the left part of a linear representation are evaluated faster when the response is made by the left, rather than the right, hand and the reverse is observed for items accessible from the right part of the linear representation. This effect, observed with the prepositions to the left of and to the right of as well as with above and below, is analogous to the SNARC (Spatial Numerical Association of Response Codes) effect, which is characterized by an interaction between magnitude of numbers and side of response.