Hölder continuous solutions to Monge-Ampère equations - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2014

Hölder continuous solutions to Monge-Ampère equations

Résumé

Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, $p>1$. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range $\MAH(X,\omega)$ of the complex Monge-Ampère operator acting on $\omega$-plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Ko\l odziej's result that measures with $L^p$-density belong to $\MAH(X,\omega)$ and proving that $\MAH(X,\omega)$ has the ''$L^p$-property'', $p>1$. We also describe accurately the symmetric measures it contains.
Fichier principal
Vignette du fichier
goodreg_23nov.pdf (289.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00648928 , version 1 (06-12-2011)

Identifiants

Citer

Jean-Pierre Demailly, Slawomir Dinew, Vincent Guedj, Hoang Hiep Pham, Slawomir Kolodziej, et al.. Hölder continuous solutions to Monge-Ampère equations. Journal of the European Mathematical Society, 2014, 16 (6), pp.619-647. ⟨10.4171/JEMS/442⟩. ⟨hal-00648928⟩
223 Consultations
222 Téléchargements

Altmetric

Partager

More